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A B S T R A C T

Purpose: Background noise reduces speech intelligibility. Time–frequency (T-F)
masking is an established signal processing technique that improves intelligibil-
ity of neurotypical speech in background noise. Here, we investigated a novel
application of T-F masking, assessing its potential to improve intelligibility of
neurologically degraded speech in background noise.
Method: Listener participants (N = 422) completed an intelligibility task either in
the laboratory or online, listening to and transcribing audio recordings of neuro-
typical (control) and neurologically degraded (dysarthria) speech under three dif-
ferent processing types: speech in quiet (quiet), speech mixed with cafeteria
noise (noise), and speech mixed with cafeteria noise and then subsequently
processed by an ideal quantized mask (IQM) to remove the noise.
Results: We observed significant reductions in intelligibility of dysarthric
speech, even at highly favorable signal-to-noise ratios (+11 to +23 dB) that did
not impact neurotypical speech. We also observed significant intelligibility
improvements from speech in noise to IQM-processed speech for both control
and dysarthric speech across a wide range of noise levels. Furthermore, the
overall benefit of IQM processing for dysarthric speech was comparable with
that of the control speech in background noise, as was the intelligibility data
collected in the laboratory versus online.
Conclusions: This study demonstrates proof of concept, validating the applica-
tion of T-F masks to a neurologically degraded speech signal. Given that intel-
ligibility challenges greatly impact communication, and thus the lives of people
with dysarthria and their communication partners, the development of clinical
tools to enhance intelligibility in this clinical population is critical.
Given the substantial burden that background noise
can have on the ability of listeners to understand spoken
language (American National Standards Institute [ANSI],
1997; French & Steinberg, 1947), the development of
effective signal processing techniques for hearing aids and
other hearing technologies to mitigate these effects is of
critical clinical import. Within the laboratory setting,
time–frequency (T-F) masks, such as the Ideal Binary
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Mask (IBM), have been shown to be highly effective
methods of reducing the negative impacts of background
noise on speech intelligibility (Healy & Vasko, 2018; Srini-
vasan et al., 2006; Wang, 2005). In the most simplistic
terms, these masks work by dividing a speech-noise mix-
ture into a series of T-F units, discarding or attenuating
portions of the signal that have a relatively unfavorable
signal-to-noise ratio (SNR) and retaining those that are
dominated by speech. Such masks have been shown to
provide significant and clinically meaningful intelligibility
benefits for both listeners with normal hearing and hear-
ing impairment (e.g., Anzalone et al., 2006; Brungart
et al., 2006; Healy & Vasko, 2018). Although the IBM is
ideal, meaning it requires a priori knowledge of the
�23 Copyright © 2023 American Speech-Language-Hearing Association 1853
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premixed speech and noise signals, algorithmic estimations
of the IBM and other T-F masks have also demonstrated
high efficacy in improving the intelligibility of speech in
noisy conditions (e.g., Chen et al., 2016; Healy et al.,
2013, 2015; Monaghan et al., 2017; Zhao et al., 2018).
These types of noise reduction algorithms based on T-F
masking show strong promise for eventual implementation
into real-time signal processing devices such as hearing aids.

To date, T-F masks have been applied to neuro-
typical, intact speech that is highly or even perfectly intel-
ligible in quiet conditions (e.g., Kjems et al., 2009; Li &
Loizou 2008). However, speech is rarely perfectly intact
and, as outlined below, can be degraded by neurological
injury or disease. When either the listener or talker has a
communication impairment, such as hearing loss or a
speech disorder, the influence of background noise on
intelligibility can be amplified (e.g., Baer et al., 1993;
Yoho & Borrie, 2018). Although T-F masks were origi-
nally designed to address the burdens specifically associ-
ated with hearing impairment, the implementation of these
masks for overcoming speech-in-noise difficulties with dis-
ordered speech, and specifically neurologically degraded
speech signals, is an important and clinically relevant
application.

Dysarthria is a motor speech disorder arising from
neurological origins such as traumatic brain injury, Parkin-
son’s disease, or stroke. The neurological speech disorder
manifests in segmental and suprasegmental degradations
that compromise the integrity of the acoustic signal, making
it difficult for a listener to understand (Liss, 2007). These
intelligibility challenges have been described as the most
clinically and socially important aspects of dysarthria
(Ansel & Kent, 1992) and have been causally linked with
reduced participation in everyday life situations that involve
communicating with others (Borrie et al., 2022). Reduced
communicative participation can have determinantal conse-
quences on individual well-being, including social isolation,
loss of employment, and challenges in accessing services
(e.g., Eadie et al., 2006; Walshe & Miller, 2011). As such,
interventions and aids that preserve or enhance intelligibil-
ity of speakers with dysarthria are critical for not only
improved communication outcomes but also quality of life.

While anecdotal reports from people with dysarthria
and their communication partners indicate that communi-
cating in noisy environments is exceedingly difficult and
negatively impacts many aspects of life, research on lis-
tener perception of speakers with dysarthria has predomi-
nately focused on the neurologically degraded speech in
quiet (i.e., no noise) conditions. Recently, however, a
large-scale, systematic evaluation of the combined effects
of environmental (i.e., background noise) and source (i.e.,
dysarthria) degradation empirically demonstrated that the
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addition of noise further decreases a listener’s ability to
understand a speaker with dysarthria (Yoho & Borrie,
2018), supporting the small collection of prior studies in
this area (Adams et al., 2008; Dykstra et al., 2012; Lee
et al., 2011). Additional support for the negative impacts
of background noise on the intelligibility of dysarthric
speech comes from studies that add noise to speech stimuli
as a methodology decision to reduce ceiling effects for per-
ception of mild forms of dysarthria (e.g., Fletcher et al.,
2019; Tjaden et al., 2014). Taken together, there is satis-
factory evidence that background noise, which is fre-
quently present in real-world communication environ-
ments, markedly worsens the already challenging task of
deciphering dysarthric speech.

Clearly, background noise has real and substantial
impacts on understanding dysarthric speech, but there are
currently no effective intervention strategies to overcome
this nontrivial concern. Although formal data are lacking,
anecdotal reports combined with the vast prevalence of
hearing loss (approximately one third of the U.S. popula-
tion aged 65 to 74 years and nearly half of those older
than 75; National Institute on Deafness and Other
Communication Disorders, 2022) suggest that the co-
occurrence of dysarthria and hearing loss within commu-
nication partners, such as spouses, is high. Furthermore,
the burden of combined hearing and speech disorders can
be profound. Although, the impact of background noise
on the intelligibility of dysarthric speech for even listeners
with normal hearing is substantial. Therefore, the applica-
tion of noise reduction via T-F masks to address this issue
more broadly (i.e., for normal-hearing communication
partners of speakers with dysarthria) may be beneficial.

There are a few different approaches to T-F mask-
ing, including the IBM (Hu & Wang, 2001; Wang, 2005)
and the ideal ratio mask (IRM; Hummersone et al., 2014;
Narayanan & Wang, 2013; Srinivasan et al., 2006; Wang
et al., 2014). In the former, each T-F unit is assigned a
value of either 0 or 1, depending on whether the unit is
dominated by speech or noise, respectively, based on a
designated SNR criterion. Units assigned 0 are discarded,
whereas units assigned 1 are passed to the listener. In the
IRM, each T-F unit is again attenuated based on speech
or noise dominance, but instead of simply being discarded
or retained, the assigned attenuation values fall along a
continuum based on the degree of speech or noise domi-
nance. Again, these techniques are considered “ideal” in
that they involve a priori knowledge of the unmixed
speech and noise signals and, therefore, allow complete
control over the manner and extent to which T-F units
are attenuated. For real-world, real-time applications in
wearable devices, algorithmic estimation of these masks
(typically achieved through machine learning) is required.
There are advantages of each T-F mask type, including
�1853–1866 May 2023
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the nature and computational resource of the algorithmic
task required to estimate the masks, as well as the degree
of speech intelligibility and subjective sound quality asso-
ciated with each.

While both the IBM and the IRM have been shown
to produce significant and substantial intelligibility gains
relative to speech in noise prior to processing with the
mask, the IRM is generally associated with superior sound
quality. However, although the algorithmic task associated
with the IBM is one of classifications (T-F units are sim-
ply classified into one of two bins based on a set crite-
rion), the task associated with the IRM is one of regres-
sions (the function relating attenuation to relative speech/
noise dominance must be established) and approaches spe-
cific for classification exist (e.g., Hinton et al., 2015).
Most recently, an approach termed the ideal quantized
mask (IQM; Healy & Vasko, 2018) was developed to
retain the best characteristics of both approaches. In this
approach, each T-F unit is attenuated according to rela-
tive speech/noise dominance (such as the IRM), but this
attenuation occurs as classification into a small number of
steps (such as the IBM). It was recently shown that an
IQM having only eight steps produced intelligibility and
sound quality that exceeded that of the IBM and matched
that of the IRM, despite the latter’s infinite number of
attenuation values (Healy & Vasko, 2018).
This Study

The primary purpose of this study was to assess the
ability of T-F mask–based noise reduction (the IQM) to
improve intelligibility of neurologically degraded speech in
background noise. The secondary purpose was to compare
the effects of background noise on the intelligibility of
neurologically degraded versus neurotypical speech across
a wide range of SNRs. Although the secondary aim
involves basic information important for our understand-
ing of communication involving neurologically degraded
speech, the rationale for the primary aim is as follows: It
is known that dysarthric speech is heavily impacted by
background noise, and that noisy dysarthric speech pro-
duces particularly poor intelligibility (Yoho & Borrie,
2018). Furthermore, these same authors also found that
the impact of dysarthria and that of noise are simply addi-
tive, meaning that the reductions in intelligibility resulting
from noise are similar for both dysarthric and neurotypi-
cal speech, and that the low intelligibility of noisy dysarth-
ric speech simply results from a lower baseline level of
intelligibility in quiet. Accordingly, it may be hypothesized
that effective noise reduction should have a similar effect
on both types of speech (return it to noise-free levels of
intelligibility). However, T-F masking–based noise reduc-
tion results in an acoustic speech signal that is sparser
Downloaded from: https://pubs.asha.org Stephanie Borrie on 05/14/2023,
than that of the original speech, due to the attenuation of
noisy T-F units. Neurotypical speech possesses sufficient
redundancy and robustness to be understood perfectly
when represented as a sparser-than-normal set of acoustic
T-F units. What remains unknown is the extent to which
dysarthric speech possesses this attribute and therefore the
extent to which it can benefit from T-F mask–based noise
reduction. In this study, the IQM was selected as a highly
effective form of T-F masking, and an actual environmen-
tal recording containing multiple sound sources was
selected as the background noise source. The magnitude
of intelligibility benefit resulting from IQM processing for
dysarthric and neurotypical (control) speech was assessed
under conditions of equal noise (i.e., same SNR applied to
both speech types) and under conditions of equal perfor-
mance for speech in noise (i.e., different SNRs applied to
dysarthric and control speech to equate performance in
control conditions). Although the first condition allows
comparison across speech types under equal acoustic con-
ditions, the second condition allows comparisons involving
similar performance baselines.

The execution of this study was in part made possi-
ble by a pandemic-motivated shift to online, large-scale
data collection. Although the data for key conditions were
collected in the laboratory using traditional methods,
online data collection was used to comprehensively map
the impact of background noise on intelligibility across a
wide range of SNRs and the ability of IQM processing to
restore intelligibility across these SNRs. This assessment
was performed for both dysarthric and neurotypical
speech. In addition to allowing a complete view of the
impact of noise on both speech types, this technique
allowed a complete view of the ability of T-F masking to
restore intelligibility for neurotypical and neurologically
degraded speech signals.

Last, reliability of laboratory versus online data col-
lection was compared. Previous work on this data collec-
tion method comparison (e.g., Cooke et al., 2011; Lansford
et al., 2016) and reliable data from prior studies examining
intelligibility of dysarthric speech utilizing online data col-
lection methods (e.g., Borrie et al., 2017; Yoho & Borrie,
2018) have demonstrated robust and congruent results.
Novel here is the comparison of intelligibility performance
across varying levels and combinations of speech degrada-
tion and types of speech signal processing.
Method

Participants

Participants were initially recruited from the student
population of Utah State University (USU) and the
Borrie et al.: Improved Intelligibility of Dysarthria in Noise 1855
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surrounding community of Logan, Utah. These 76 indi-
viduals formed the in-lab participant groups. As a result
of the COVID-19 pandemic, data collection was shifted
online, and additional participants were recruited via the
crowd sourcing website Amazon Mechanical Turk
(MTurk; http://www.mturk.com). These 346 individuals
formed the online participant groups. In total, 422 adults,
aged 18 to 71 years (M = 35.1, SD = 12.2), participated
in the study. Table 1 shows the demographic and back-
ground characteristics of the participants, classified by
data-collection method (in-lab vs. online). All participants
were native speakers of American English living in the
United States and reported no history of speech, language,
or hearing impairment. All in-lab participants had pure-
tone audiometric thresholds at or below 20 dB hearing
level at octave frequencies from 250 to 8000 Hz (ANSI,
2004, 2010). To be included in the study, participants had
to demonstrate task understanding and engagement, oper-
ationally defined as obtaining at least 80% of words cor-
rect for transcribing neurotypical (control) speech in quiet
conditions. Participants received course credit or a mone-
tary incentive. Data collection was approved by the USU
Institutional Review Board.

Speech Stimuli

The stimuli consisted of 144 syntactically plausible
but semantically anomalous phrases (e.g., amend estate
approach; had eaten junk and train). Phrases were all six syl-
lables in length and ranged from three to five words. These
phrases, which restrict the listener’s use of higher level
cognitive-linguistic information to resolve the speech signal,
were created specifically for examining speech perception in
Variable

� �

Table 1. Demographic and background characteristics for in-lab versus o

Overall In

N = 422 n

Mean age (SD) 35.1 (12.2) 20.3

Gender

Female 202 (47.9%) 55

Genderqueer 2 (0.5%) 1

Male 216 (51.2%) 19

Nonbinary 2 (0.5%) 1

Not Hispanic/Latinx 391 (92.7%) 72

Race

Asian/Pacific Islander 31 (7.3%) 1

Black/African American 19 (4.5%) 0

Caucasian/White 363 (86%) 74

Native American 4 (0.9%) 1

None of the above 5 (1.2%) 0

*Chi-square for categorical variables and t test for continuous.
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adverse listening conditions (Liss et al., 1998) and have
been used extensively in the study of the perception of dys-
arthric speech (e.g., Borrie et al., 2012, 2017). The 144
phrases were divided into two 72-phrase sets and balanced
for the total number of words, stress patterns of phrases,
and speech segmentation error opportunities.

Speech Type
Two 72-year-old male native speakers of American

English, one with dysarthria and one control, produced the
stimuli for the study (one 72-phrase speech set each). The
speaker with dysarthria presented with mild–moderate
ataxic dysarthria secondary to cerebellar disease. His speech
was characterized perceptually by excess and equal stress
(scanning speech), prolonged phonemes and intervals,
monotone, monoloudness, and imprecise articulation. The
diagnosis was made by three independent speech-language
pathologists (SLPs) with expertise in diagnosing motor
speech disorders. The age and gender-matched control
speaker presented with no neurological history or diagnosed
speech production disorder, as confirmed by the same three
SLPs above.

Processing Type
For each of the two speech types (dysarthria and

control), there were three different processing conditions:
speech in quiet (quiet), speech mixed with cafeteria noise
(noise), and speech mixed with cafeteria noise and then
processed by the IQM (IQM-processed). Prior to process-
ing the speech, each separate speech utterance file was
resampled to 16 kHz (16-bit precision) and trimmed to
have 400 ms of silence at the beginning and end of each
file. This speech represented the quiet condition.
p value*

�

nline participants.

-lab Online

= 76 n = 346

(2.7) 38.3 (11.1) < .001

< .001

(72.4%) 147 (42.5%)

(1.3%) 1 (0.3%)

(25%) 197 (56.9%)

(1.3%) 1 (0.3%)

(94.7%) 319 (92.2%) .599

.023

(1.3%) 30 (8.7%)

(0%) 19 (5.5%)

(97.4%) 289 (83.5%)

(1.3%) 3 (0.9%)

(0%) 5 (1.4%)
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Figure 1. Comparisons of mean intelligibility performance (percent
words correct) by speech and processing type for conditions of (a)
equal signal-to-noise ratios (SNRs) and (b) equal performance for
speech in noise across dysarthric and control speech. The points
represent individual intelligibility scores for each individual partici-
pant. IQM = ideal quantized mask.
For the noise conditions, we utilized a noise file from
an Auditec compact disc (http://www.auditec.com). This
noise file (~10 min) was created using three overdubbed
recordings from a busy hospital cafeteria and consists of
various sound sources, including multiple voices, impact
noises from dishes, and so forth. Thus, it represents a com-
plex everyday sound and was selected for its ecological
validity. To create the noise condition, each utterance file
was mixed with a random segment of noise having equal
duration and scaled to produce the desired SNR.

The creation of stimuli for the IQM condition
followed the procedures of Healy and Vasko (2018). The
speech utterance and the noise segment comprising each
mixture was separated into T-F units using first a gamma-
tone filterbank having 64 channels centered from 50 to
8000 Hz equally spaced on the equivalent rectangular
bandwidth scale, then 20-ms Hanning windows with 10-ms
shift. The IRM was then generated, defined as

IRM t; fð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S t; fð Þ
S t; fð Þ þN t; fð Þ

s
(1)

where S(t, f ) and N(t, f ) denote speech and noise energy
within a T-F unit at time t and frequency f, respectively.
The IRM was transformed into the IQM having eight
attenuation steps (IQM-8) by quantizing the IRM attenua-
tion value for each T-F unit into the appropriate IQM
attenuation step. The mapping of IRM to IQM attenua-
tion, and the IQM attenuation values employed, may be
found in Healy and Vasko (2018, see Figure 1). This
mask, consisting of one of eight discrete attenuation
values for each T-F unit, was then applied to the speech-
plus-noise mixture to remove the background noise and
result in IQM-processed speech. Following processing,
each utterance file in each of the conditions was scaled to
the same root-mean-square level. This processing was per-
formed primarily in MATLAB.
Procedure

The preprocessed speech stimuli files were pro-
grammed in Gorilla (https://gorilla.sc/), an experiment
builder for the collection of behavioral data. The basic
function of the application was to present the participants
with the speech stimuli and have them type out what they
thought the person was saying. Prior to beginning all data
collection, participants were asked to adjust the volume of
a single utterance to a comfortable listening level over
headphones. During testing, participants could only listen
to each phrase once but could take as much time as neces-
sary to type their responses. Based on pilot testing, SNRs
resulting in equal performance (~40% correct) between the
dysarthric and control speech-in-noise conditions were
Downloaded from: https://pubs.asha.org Stephanie Borrie on 05/14/2023,
B

determined to be +5 dB and −3 dB, respectively. To
address the question of intelligibility under conditions of
equal performance, one group of in-lab participants (n =
39) received the speech stimuli with these differing SNRs
between the speech types. A second group of in-lab partic-
ipants (n = 38) heard the stimuli at the single fixed SNR
of +1 dB for both dysarthric and control speakers. Each
online participant was assigned a single SNR for both
speech types, with SNRs ranging from −5 dB to 23 d
(−5, −3, −1, 1, 3, 5, 7, 9, 11, 17, 23 dB). These 11 SNRs
Borrie et al.: Improved Intelligibility of Dysarthria in Noise 1857
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thus required 11 groups of participants. Each participant
(both in-lab and online) heard all 144 phrases across the six
conditions, blocked by type of speech (dysarthria or con-
trol) and processing type (quiet, noise, IQM-processed). An
average of 32 participants (range: 29–39) were in each of
the experimental groups. The presentation order of the
blocks was randomized across all participants to eliminate
potential order effects. On average, the speech perception
task took the participants 30 min to complete.

Transcript Analysis

The participant transcripts were scored for correct
words using autoscore, an open-source, computer-based
tool for automated scoring of orthographic transcripts
(http://autoscore.usu.edu/; Borrie et al., 2019). We applied
the same scoring rules as previous studies on listener
understanding of dysarthric speech (e.g., Borrie et al.,
2022; Yoho & Borrie, 2018). Words were scored as correct
if they matched the intended target exactly or differed
only by tense or plurality. Homophones and obvious spell-
ing errors were scored as correct using a preprogrammed
default list of common misspellings. A percent words cor-
rect (PWC) score was tabulated for each participant, for
each of the six conditions, by summing words correct
from 24 speech phrases at each processing type and divid-
ing by the total number of words. Thus, each participant
had six intelligibility scores, one for each of the experi-
mental conditions.
Statistical Analysis

To assess the magnitude of benefit from IQM pro-
cessing on dysarthric speech in noise, we compared the
benefit obtained from IQM processing for dysarthric and
control speech under conditions of (a) equal noise (i.e.,
same SNR applied to dysarthric and control speech) and
(b) equal performance for speech in noise (i.e., different
SNRs applied to dysarthric and control speech). Prior to
these statistical comparisons, the raw PWC scores were
transformed using rationalized arcsine unit transformation
to reduce potential issues of the distribution of proportion
data (Studebaker, 1985). This transformation retains the
other properties of the data while improving the distribu-
tion for comparisons. The comparisons were made using
linear mixed-effects modeling, accounting for the repeated
measures via random intercepts by individual. These
models can be expressed as

PWCit ∼ N μit; σð Þ (2)

μit ¼ β0 þ β1processingit þ β2speechit þ β3processingit
� speechit þ αi (3)
� �1858 Journal of Speech, Language, and Hearing Research Vol. 66
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αi ∼ N μi; σið Þ (4)

where PWCit is the transformed percent words correct for
each individual and condition, the β3 is the estimate of
interest (the effect of processing type by speech type), and
αi is the random intercept by individual participant. Like-
lihood ratio tests were used to test for differences between
conditions by speech type. Contrasts were assessed to esti-
mate the magnitude of benefit from IQM processing
within each speech type, with Bonferroni adjustment for
the multiple comparisons. Reported pairwise contrasts
(denoted “b” throughout) are in percentage units (e.g.,
b = 20.0 signifies a 20% point difference).

To assess the ability of IQM processing (i.e., noise
removal) to restore intelligibility of dysarthric and control
speech in noise to performance levels in quiet (i.e., no
noise), as a function of the SNR, we used a psychometric
(“logistic”) curve. Specifically, we used the self-starting non-
linear least squares logistic model to estimate the effect of
SNR on PWC by speaker type and processing level (both
noise and IQM). The quiet condition was not modeled as
that was not a function of SNR but was used as a reference
for the other conditions. The model estimated three param-
eters: the asymptote (k), the inflection point (x), and the
scale parameter (s), as shown by the following equation:

PWC ¼ k

1þ e
x�SNR

s

(5)

The asymptote is the estimated highest level of
PWC that can be achieved, the inflection point is the
SNR value where PWC is higher than 50%, and the scale
parameter is used for scaling the curve. The resulting esti-
mates provide logistic curves that can be compared across
conditions.

To assess reliability between in-lab and online data
collection, we used independent-samples t tests to compare
the laboratory and online results for each SNR, speech
type, and stimulus pair wherein both laboratory and
online results were available. This resulted in 12 compari-
sons. Notably, because all comparisons were planned a
priori, we did not adjust for the multiple comparisons.

Assumptions of each statistical test were checked for
problematic patterns. All analyses were performed in the
R statistical environment (R Version 4.1.0; R Develop-
ment Core Team, 2020). Data cleaning and visualization
relied on the tidyverse packages (Wickham et al., 2019).
Summary statistics were computed using the furniture and
gtsummary packages (Barrett & Brignone, 2017; Sjoberg
et al., 2021). The linear mixed-effects models relied on the
lmer package (Bates et al., 2015) with likelihood ratio tests
�1853–1866 May 2023
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using the built-in stats package. Statistical contrasts used
the emmeans package (Lenth, 2022). The nonlinear least
squares and t tests were performed using the built-in stats
package. Analysis code and model output associated with
this work are available at the study repository hosted at
https://osf.io/z6dw5.
Results

Magnitude of Benefit

To quantify the magnitude of benefit from IQM-
processing of dysarthric speech in noise, we assessed two
configurations of conditions. First, we compared across
conditions of equal SNR (+1 dB for the speech in noise
and IQM-processed conditions for both speech types). Sec-
ond, we compared across conditions of equal performance
(~40% PWC with SNRs of +5 and −3 for the dysarthric
and control, respectively, for both speech in noise and
IQM-processed conditions).

The mean intelligibility scores for each condition are
displayed in Figure 1. The upper panel displays the results
for conditions of equal SNR, and the bottom panel dis-
plays the results for conditions of equal performance. For
control and dysarthric speech in quiet, performance was
94% and 76%, respectively. Thus, these initial descriptive
data confirm that dysarthria is associated with reduced
intelligibility. In equal SNR conditions, intelligibility of
control speech increased from 72% in the speech-in-noise
condition to 92% in the IQM-processed condition, revealing
a 20-percentage-point gain (and a 2-percentage-point differ-
ence between IQM-processed [92% correct] and speech in
quiet [94% correct]). In contrast, in these equal SNR condi-
tions, intelligibility of dysarthric speech increased from 26%
in the speech-in-noise condition to 70% in the IQM-
processed condition, revealing a 44-percentage-point gain
(and a 6-percentage-point difference between IQM-
processed [70% correct] and speech in quiet [76% correct]).
In equal-performance conditions, intelligibility of control
speech increased from 39% in the speech-in-noise condition
to 90% in the IQM-processed condition, revealing a 51-
percentage point gain (and a 4-percentage-point difference
between IQM-processed [90% correct] and speech in quiet
[94% correct]). In contrast, in these equal-performance
conditions, intelligibility of dysarthric speech increased
from 40% in the speech-in-noise condition to 72% in the
IQM-processed condition, revealing a 32-percentage-point
gain (and a 4-percentage-point difference between IQM-
processed [72% correct] and speech in quiet [76% correct]).

For conditions of equal SNR, there was a significant
interaction between processing type and speech type (p <
.001). Contrasts indicated that the IQM-processed and
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speech-in-noise conditions were significantly different for
both speech types (b = 25.2, p < .001 for control; b =
42.3, p < .001 for dysarthria), with large effect sizes, par-
ticularly for dysarthric speech. Thus, IQM processing, in
this comparison, was more beneficial for dysarthric rela-
tive to control speech (p < .001). There were differences
between the IQM-processed and speech-in-quiet conditions
for both speech types (b = 4.6, p = .007 for control and
b = 8.4, p < .001 for dysarthria), indicating that intellig-
ibility was not fully restored for either neurotypical or
neurologically degraded speech.

For conditions of equal performance in the speech-
in-noise conditions, likelihood ratio tests indicated a sig-
nificant interaction between processing type and speech
type (p < .001). Contrasts indicated that the IQM-
processed and speech-in-noise conditions were significantly
different for both speech types (b = 54.0, p < .001 for con-
trol; b = 30.6, p < .001 for dysarthria), with large effect
sizes, in this case, more so for the control speech (p <
.001). Here, there were differences between the IQM-
processed and quiet conditions for both speech types (b =
7.6, p < .001 for control and b = 4.9, p < .001 for dysar-
thria), once again indicating that intelligibility was not
fully restored for either neurotypical or neurologically
degraded speech.
Psychometric Functions

To comprehensively examine the impact of IQM
processing on the restoration of intelligibility of dysarthric
speech-in-noise, we psychometrically mapped intelligibility
performance as a function of SNR. Estimates from the
nonlinear least squares logistic models with their accompa-
nying standard errors are shown in Table 2. All estimates
were significantly different from zero. These curves are
shown in Figure 2 with a reference line for each speech
type to the speech in quiet performance levels (94% intel-
ligibility for control speech and 76% intelligibility for dys-
arthric speech). Each point on the plot is the average for
that specific SNR, speech type, and processing type. Sev-
eral patterns (based on the model results and/or the figure)
are immediately clear. First, as expected, intelligibility of
the control speech was greater regardless of processing
type—the speech-in-quiet condition as shown in the figure
and the estimated asymptotes are higher for control rela-
tive to dysarthric speech. Second, the scale parameter indi-
cates that the steepest slope was for the speech-in-noise
condition for the control speech, followed by the IQM-
processed condition for the control speech, then the
speech-in-noise condition for the dysarthric speech and,
last, the IQM-processed condition for the dysarthric
speech. Third, relatively favorable SNRs that do not affect
intelligibility of control speech do affect the intelligibility
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Stimulus Speaker

Table 2. Estimates from the nonlinear least squares regression models.

Asymptote Inflection point Scale

Estimate SE Estimate SE Estimate SE

IQM Control 0.935 0.005 −18.6 6.180 4.40 1.950

IQM Dysarthria 0.756 0.015 −18.3 4.320 7.77 2.590

Noise Control 0.919 0.008 −2.36 0.105 2.61 0.117

Noise Dysarthria 0.712 0.013 3.43 0.258 4.65 0.227

Note. SE = standard error; IQM = ideal quantized mask.
of dysarthric speech. For instance, for SNRs of +11, +17,
and +23 dB, there is no distinguishable impact of noise on
the intelligibility of the control speech; however, for the
dysarthric speech, listeners perform below levels achieved
in speech in quiet. Thus, taken together, the impact of
noise is different across the two types of speech. Fourth,
the IQM-processed condition, regardless of speech type,
had similar inflection points. These inflection points,
−18.6 and −18.3, are further negative than the speech-in-
noise conditions, with the speech-in-noise condition for
dysarthric speech having the highest value (3.4). This indi-
cates that the IQM-processed speech had higher intellig-
ibility at less favorable SNRs than the speech-in-noise
conditions for both speech types. Importantly, it also indi-
cates that the impact of IQM processing is not differently
affected by the speech type, despite the evidence that the
intelligibility of speech in noise is differently affected by
speech type.
� �

Figure 2. Logistic curves as a function of signal-to-noise ratio (SNR) est
represented by the dashed line at the top of each of the curves. Black b
bols represent averages from the online participants. SE = standard error
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In-Lab Versus Online

Last, we compared intelligibility performance levels
(i.e., PWC values) between the laboratory and online sam-
ples for each SNR, speaker, and stimulus pair, wherein
both in-lab and online data were available. Figure 3
shows these comparisons, highlighting the consistent
match between laboratory and online samples for the
same experimental conditions. Independent samples t tests
confirmed this finding, showing no significant differences
across all 12 comparisons (all ps > .10).
Discussion

Here, we assessed the impact of noise on neurologi-
cally degraded as well as neurotypical speech and whether
noise reduction via T-F masking could improve intelligibility
�

imated for each condition and speech type. The quiet condition is
oxes represent the averages from the lab, whereas the other sym-
; IQM = ideal quantized mask.
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Figure 3. Comparisons of mean intelligibility performance between
the lab and online samples across speech type, processing type,
and signal-to-noise ratio (SNR) levels. Error bars are ± 1 SE.
IQM = ideal quantized mask.
of these speech types in background noise. As described
earlier, T-F masks work by attenuating portions of the
noisy speech signal with relatively unfavorable SNRs. The
IQM, an approach that applies one of several discreet
attenuation steps to individual T-F units based on each
unit’s SNR, was selected given prior work demonstrating
favorable intelligibility and sound quality relative to other
masks (Healy & Vasko, 2018). Across all SNR conditions,
we observed significant intelligibility improvements from
speech in noise to IQM-processed speech, showing that
IQM processing improved listener understanding of dys-
arthric speech in noise. Although a body of work had previ-
ously demonstrated the successful application of T-F masks,
including the IQM, to listener understanding of neurotypical
(i.e., control) speech in noise (e.g., Healy & Vasko, 2018;
Kim et al., 2009; Sinex, 2013), to our knowledge, this is the
first study to examine the application of T-F mask process-
ing to impaired speech. Thus, this study demonstrates proof
of concept for the application of T-F mask noise reduction
to disordered, and specifically, dysarthric speech.
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Overall, the data suggest that the benefit of IQM
processing for dysarthric speech is comparable with that
of neurotypical speech. In both speech types, intelligibility
was not fully restored by IQM processing to levels of
quiet at every SNR (see Figure 2); however, intelligibility
was within 12 percentage points of quiet performance for
even the least favorable SNR for both types of speech. At
more favorable SNRs, IQM-processed intelligibility essen-
tially matched scores in quiet for both speech types, indicat-
ing complete mitigation of the effects of noise. For condi-
tions of equal performance (see Figure 1, bottom panel),
intelligibility in the IQM-processed condition was within 4
percentage points of intelligibility in quiet for both control
and dysarthric speech. For conditions of equal SNR (see
Figure 1, top panel), intelligibility in the IQM-processed
condition was within 2 and 6 percentage points of intellig-
ibility in quiet for control and dysarthric speech, respec-
tively. The current findings suggest that, as the noise levels
become increasingly unfavorable, the nature of IQM
removal process, in which additional small reductions in
acoustic integrity result, impacts the ability of noise reduc-
tion to fully restore intelligibility of both neurotypical and
neurologically degraded acoustic speech signals.

It was also observed that, for conditions of equal
SNR, in which dysarthric speech was significantly less
intelligible than control speech, the IQM produced greater
intelligibility improvement for dysarthric speech relative to
control speech. This finding is likely attributable to the
lower baseline intelligibility in noise for the dysarthric
speech and the resulting greater room to improve. This
indicates that, within a particular noise environment, T-F
mask noise reduction may be more beneficial for degraded
speech. Within conditions of equal performance across the
speech types in noise, the magnitude of benefit was greater
for control speech. This finding is likely attributable to the
lower overall intelligibility of the dysarthric speech in
quiet (a lower ceiling), meaning that there was less oppor-
tunity for IQM processing to improve performance rela-
tive to control speech. Because of these differences
between intelligibility in noise (baseline) and in quiet (ceil-
ing) across the two speech types, perhaps the more reflec-
tive measure of the impact of IQM noise reduction is the
comparison between IQM-processed and quiet speech.

Using the psychometric model-based predictions and
online procedures, the ability of T-F masks to improve
the intelligibility of dysarthric speech in noise is not only
robust but also further supports the initial findings that,
overall, the benefit from T-F masking is comparable
across speech type. That is, while the current data indicate
that background noise has a greater negative impact on
understanding dysarthric speech, the ability to restore
speech intelligibility to levels of speech in quiet is, in gen-
eral, similar for dysarthric and control speech. Thus, the
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presence of degraded segmental and suprasegmental acous-
tic information in neurologically degraded speech, which
significantly drives down intelligibility relative to control
speech, did not largely impact the effectiveness of IQM
processing. Collectively, the study results allow us to con-
clude that IQM processing of speech in noise offers compa-
rable and considerable intelligibility benefits for neurotypi-
cal and neurologically degraded speech. This finding is
promising, highlighting the effectiveness of the application
of T-F mask noise reduction to improve normal-hearing
communication partners’ ability to understand a speaker
with dysarthria in background noise.

There has been limited investigation of the overall
impact of background noise on dysarthric speech (Adams
et al., 2008; Dykstra et al., 2012; Lee et al., 2011). In a
recent study in this area, Yoho and Borrie (2018) found
that, for relatively favorable SNR levels, increasing levels of
speech-shaped noise decreased intelligibility at an equivalent
rate for control and dysarthric speech. In this study, the psy-
chometric function for control speech in noise was steeper
than the function for dysarthric speech in noise, indicating
that the intelligibility of neurotypical speech improved more
rapidly as a function of SNR. This difference in findings
across the two studies may be attributable to the noise types
utilized in each (speech-shaped noise vs. cafeteria noise) and
the range of SNRs evaluated. Continued investigation is
needed to comprehensively characterize the impacts of differ-
ent types of background noise on understanding of speakers
with dysarthria, as well as any interactions between type of
noise and dysarthria type or severity.

Importantly, we observed that that even minimal
amounts of background noise, that is, levels that did not
impact intelligibility of neurotypical speech, had a marked,
negative impact on intelligibility of dysarthric speech. As
illustrated in Figure 2, +11 dB, +17 dB, and +23 dB,
reduced intelligibility of dysarthric speech by 16, 12, and 3
percentage points, respectively, whereas control speech was
within 1-percentage point of performance in quiet for each
of these SNRs. Thus, in environments with negligible back-
ground noise, levels that many listeners may not even con-
sciously consider “noisy,” the negative impact on listener
understanding of dysarthric speech is substantial. This dem-
onstration of the relative “fragility” of the dysarthric speech
signal at very low levels of noise is supported by the earlier
finding that removal of even small portions of the signal via
IQM processing can have a negative impact in unfavorable
SNRs (i.e., incomplete restoration). These findings provide
empirical support for anecdotal reports that communicating
in noisy environments is exceedingly difficult for people with
dysarthria and their communication partners, even for lis-
teners with normal hearing, and underscores the high
importance of addressing the difficulties inherent in under-
standing disordered speech in background noise.
� �1862 Journal of Speech, Language, and Hearing Research Vol. 66
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Finally, we also showed highly comparable intellig-
ibility performance across two distinctly different data col-
lection methods, in-lab versus online, and these compara-
ble performances held across speech type, processing type,
and noise levels. This was the case even though the two
samples represented somewhat different populations, as
indicated by demographic information. As noted earlier,
others have found comparable intelligibility data for lis-
teners transcribing dysarthric speech in-lab versus online
methods (Lansford et al., 2016). Novel here is the compar-
ison of intelligibility performance across varying levels
and combinations of speech degradation and processing,
with average intelligibility levels ranging from approxi-
mately 25% to 95%. That performance discrepancies did
not emerge in more challenging listening conditions (e.g.,
lower SNRs) affords additional validation for the utility
of online crowdsourcing as a feasible data collection
method for studies examining listener understanding of
degraded speech. Of note, as stated in the method, we
excluded workers who showed evidence of poor task
engagement, operationally defined as achieving less than
80% of words correct for transcribing control (i.e., neuro-
typical) speech in quiet. This resulted in excluding 131
potential participants from the analyses, leaving 435 par-
ticipants to be included in the study. This highlights how
intelligibility data collected through online crowdsourcing
can present challenges; however, with some simple exclu-
sion criteria based on unbiased markers of unsatisfactory
task engagement, data are highly valid (see also Ziegler
et al., 2021, for additional discussion and application of
online crowdsourcing for valid and accurate intelligibility
data in the assessment of dysarthria).

We note that the current comparison between labo-
ratory and online data collection did not hinge critically
on the scientific inquiry of this study. However, the bene-
fits of online data collection are many. By crowdsourcing
the experiment via MTurk, we were able to continue this
work throughout a global pandemic that halted in-person
data collection at the authors’ universities for approxi-
mately 2 years. Furthermore, this collection allowed for a
large, diverse sample of participants that more closely rep-
resents the general population (see Table 1) while still con-
trolling for important variables such as country of resi-
dence, native language, and previous speech, language,
and hearing history. With large numbers of participants
available, the study could be extended from the original
design shown in Figure 1 to include the collection of data for
the complete psychometric functions displayed in Figure 2.
Criticisms of online data collection methods have included
lack of control over stimulus presentation levels and the
testing environment. However, compelling comparable
results not only in this study but also others, including
those that examine listener processing beyond dysarthric
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speech (e.g., Cooke et al., 2011; McAllister Byun et al.,
2015; Slote & Strand, 2016), refute such criticism, collec-
tively advancing online data collection methods as suffi-
ciently rigorous for speech perception studies.

Limitations, Clinical Implications, and
Future Directions

Although a subset of acoustic features (e.g., reduced
vowel space and reduced speaking rate) have been identified
as unifying the dysarthrias as a group of neurogenic speech
disorders (see Weismer & Kim, 2010), it is important to
acknowledge that there are different types of dysarthria,
with different pathophysiology and constellations of deviant
speech features. Here, we used stimuli from a speaker
whose speech features represented the cardinal features of
an ataxic dysarthria. Although this methodological design
ensured suitable experimental control and allowed for the
systematic evaluation of the IQM across many SNRs, it
may limit the generalization of some of the results, key
being the specific magnitude of benefit. However, despite
acoustic differences across the dysarthrias, the broader find-
ings of this work—that background noise substantially
reduced intelligibility of a neurologically degraded speech
signal and that a T-F masking–based noise reduction tech-
nique effectively improved intelligibility of the degraded
signal—suggests effective application for other types of neu-
rologically degraded, or otherwise impaired, speech.

Previously, we found that listeners with normal
hearing struggle considerably to understand a speaker
with dysarthria in the presence of background noise
(Yoho & Borrie, 2018). Here, we extended those findings
to a different type of noise (white noise vs. cafeteria noise)
and a broader range of SNRs. Taken together, these data
demonstrate clear and important implications for clinical
practice—that people with dysarthria and their communi-
cation partners should be counseled on the importance of
optimizing the communication environment, and that fur-
ther study is needed to identify interventions to overcome
the speech-in-noise challenge for this population. The cur-
rent results indicate that T-F masks may be one promising
solution to ameliorate these issues, even for listeners with
normal hearing. For example, a communication partner of
a person with dysarthria could potentially utilize a device
similar to a hearing aid, one having effective noise reduction
but without amplification, to reduce the deleterious effects
of background noise on their partner’s degraded speech.
Future work in this area could include evaluation of the
benefits of T-F processing across a range of dysarthria types
and identify which acoustic cues are effectively transmitted
via the T-F masks when the speech signal is degraded.

In addition, it is likely that individuals with impaired
hearing could benefit greatly from noise-reduction strategies
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(e.g., T-F masks) that improve the reception of dysarthric
speech. As stated in the Introduction section, hearing loss is
highly prevalent. Prior studies have shown that understand-
ing speakers with dysarthria is negatively impacted by hear-
ing loss and advanced age (Lansford et al., 2018; McAuliffe
et al., 2017). Given the common etiologies of dysarthria
(i.e., stroke and degenerative disease), the speech disorder is
also associated with advanced age. Although statistics on
the co-occurrence of speech and hearing impairments in
communication dyads (i.e., person with dysarthria and
partner with hearing loss) are lacking, anecdotal evidence
from clinicians who treat patients with dysarthria report
the co-occurrence with alarming frequency. Given that the
benefit of T-F mask noise reduction in understanding
healthy speech in noise has been previously established in
individuals with hearing loss (e.g., Anzalone et al., 2006,
Healy et al., 2013) and, in this study, understanding dys-
arthric speech in noise for individuals with normal hearing,
a future investigation into the benefit of T-F masks in
understanding speakers with dysarthria in background
noise for listeners with hearing loss is well justified.

Although this study examined ideal masking, that is,
separation of the speech and noise signals based on a
priori knowledge of each, the ultimate clinical goal is to
develop algorithms capable of estimating such masks in
real time. The current data demonstrate proof of concept
that T-F masking has the capability to restore the intellig-
ibility of dysarthric speech in noise to levels in quiet. Fur-
ther work is needed to evaluate the ability of algorithmic
estimation of T-F masks to improve the intelligibility of
disordered speech, particularly when the speech is charac-
terized by highly unpredictable acoustic degradations, such
as the case of hyperkinetic dysarthria.

This challenge is nontrivial, given that the deep
learning techniques typically used to estimate the T-F
mask rely on a large number of training utterances to
train the artificial neural network to identify clean speech
in the noisy mixture. Such large data sets of neurologically
degraded speech may not be readily available. However,
the ability of modern neural networks to generalize to
conditions different from those encountered during train-
ing is robust, as demonstrated in several recent works
(e.g., Healy et al., 2020; Healy, Johnson, et al., 2021;
Healy, Taherian, et al., 2021). This generalization has
included the ability of a network trained using English-
language speech materials to operate on Mandarin-
language speech without hindrance (Healy, Tan, et al.,
2021). Although the extrapolation from neurotypical
speech to dysarthric speech is different from that across
different languages, these demonstrations of vast generali-
zation suggest that neural networks trained using neuro-
typical speech may prove effective for removing background
noise from neurologically degraded speech, without the
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need to train directly on neurologically degraded speech.
Because these networks are also able to generalize to
speech from talkers not in the training set (untrained
talkers), training using the speech from any particular
talker is not needed. Other questions remain, including the
target that the network aims toward—is noise reduction
more effective when the network is trained to output
noise-free neurotypical speech or noise-free neurologically
degraded speech? Although questions remain involving the
best way to implement T-F mask or machine learning-
based noise reduction for neurologically degraded speech,
the current results offer promise that effective real-world
noise-reduction systems can be developed to support the
communication needs of people with dysarthria and their
communication partners.
Conclusions

Here, we found that the presence of background
noise significantly reduced intelligibility of a speaker with
dysarthria, even at highly favorable SNRs that produce
little to no reduction in the intelligibility of neurotypical
speech. However, the application of T-F masks (the IQM)
significantly increased intelligibility of the dysarthric
speaker across a wide range of noise levels. In fact, at sev-
eral SNRs, intelligibility of this speaker was restored to
performance levels in quiet. Furthermore, the overall ben-
efit of IQM processing for dysarthric speech in noise was
comparable to that of the neurotypical control speech in
noise. Given the substantial, negative impact of back-
ground noise on understanding speakers with dysarthria,
future development of clinical tools to address these diffi-
culties, which impact both people with dysarthria and
their communication partners, could significantly improve
communication outcomes and quality of life for these
speaker-listener dyads. The current results are promising
with regard to the application of T-F masks as a noise-
reduction technique for neurologically degraded speech in
background noise.
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