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Purpose: Communication atypicalities are considered promising markers of a 
broad range of clinical conditions. However, little is known about the mecha-
nisms and confounders underlying them. Medications might have a crucial, rela-
tively unknown role both as potential confounders and offering an insight on the 
mechanisms at work. The integration of regulatory documents with dispropor-
tionality analyses provides a more comprehensive picture to account for in 
future investigations of communication-related markers. The aim of this study 
was to identify a list of drugs potentially associated with communicative atypi-
calities within psychotic and affective disorders. 
Method: We developed a query using the Medical Dictionary for Regulatory 
Activities to search for communicative atypicalities within the FDA Adverse 
Event Reporting System (updated June 2021). A Bonferroni-corrected dispro-
portionality analysis (reporting odds ratio) was separately performed on sponta-
neous reports involving psychotic, affective, and non-neuropsychiatric disor-
ders, to account for the confounding role of different underlying conditions. 
Drug–adverse event associations not already reported in the Side Effect 
Resource database of labeled adverse drug reactions (unexpected) were sub-
jected to further robustness analyses to account for expected biases. 
Results: A list of 291 expected and 91 unexpected potential confounding medi-
cations was identified, including drugs that may irritate (inhalants) or desiccate 
(anticholinergics) the larynx, impair speech motor control (antipsychotics), or induce 
nodules (acitretin) or necrosis (vascular endothelial growth factor receptor inhibitors) 
on vocal cords; sedatives and stimulants; neurotoxic agents (anti-infectives); 
and agents acting on neurotransmitter pathways (dopamine agonists). 
Conclusions: We provide a list of medications to account for in future studies 
of communication-related markers in affective and psychotic disorders. The cur-
rent test case illustrates rigorous procedures for digital phenotyping, and the 
methodological tools implemented for large-scale disproportionality analyses 
can be considered a road map for investigations of communication-related 
markers in other clinical populations. 
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Affective and psychotic disorders have long been 
associated with atypical communicative patterns, for exam-
ple, decreased emotional expression and flat prosody 
(Cummins et al., 2015; Parola et al., 2020). This aware-
ness is widely used during the assessment of the disorders 
and is increasingly investigated through automated voice 
and content analysis (Faurholt-Jepsen et al., 2018; Hansen 
et al., 2022; Low et al., 2020; Parola et al., 2022, 2023). 
The combination of new powerful forms of machine learn-
ing, pervasive smartphone data collection, and other 
sources of big data will allegedly identify historically elu-
sive markers for affective and psychotic disorders and, 
therefore, enable more reliable diagnoses, continuous eval-
uation of symptoms, and perhaps even personalized treat-
ment (Arevian et al., 2020; Ben-Zeev et al., 2019; Cohen 
et al., 2020, 2021; Insel, 2017). However, communication 
is a complex phenomenon, and its relation to specific dis-
orders is not straightforward, with many potential con-
founders and ethical considerations (Albuquerque et al., 
2021; Corona Hernández et al., 2023; Parola et al., 2022; 
Rybner et al., 2022). 

Medications, which are disproportionately associ-
ated with neuropsychiatric diagnoses and their comorbidi-
ties, can affect not only mental health but also the com-
municative patterns in the patient. For example, com-
monly used medications with anticholinergic effects (e.g., 
antihistamines and antidepressants) can cause reduced sali-
vation flow (xerostomia) and sedation of the mouth, 
which could cause dysphonia and difficulty in articulation 
(Haft et al., 2015). As another example, antipsychotics 
with high D2R (dopamine D2 receptor) occupancy are 
administered to patients with psychotic disorders and are 
also associated with slower speech and increased pauses 
(de Boer et al., 2020). Therefore, it is often not clear 
whether the communicative atypicalities identified as 
behavioral markers of affective and psychotic disorders 
could be partially confounded by medications. Unfortu-
nately, more general investigations of the associations 
between communicative atypicalities and medications are 
still sparse, and no comprehensive overview is available 
(see Supplemental Material S1, Section A, for an overview 
of studies assessing the effect of medication on speech pat-
terns in schizophrenia). 

Therefore, the objective of this study was to identify 
a list of drugs that could be associated with communicative 
atypicalities, which should be evaluated in the future as 
potential confounders in communication-related markers of 
affective and psychotic disorders. After introducing our two 
key sources of information—clinical trial–based informa-
tion (Side Effect Resource [SIDER] database; Kuhn et al., 
2016) and spontaneous reports (FDA Adverse Event 
Reporting System [FAERS]; U.S. Food and Drug Admin-
istration [FDA], 2022)—four common causal mechanisms 
Downloaded from: https://pubs.asha.org Stephanie Borrie on 09/13/2023,
underlying observed associations between drugs and adverse 
events are briefly discussed. We present how the potential 
biases highlighted can be accounted for in the analyses 
before detailing materials and methods. Finally, the result-
ing list of drugs associated with communicative atypicalities 
is reported and discussed. 

Information Sources 

As medications are tested in clinical trials, adverse 
drug reactions are evaluated, and if the drug is approved 
for market distribution (marketing authorization), these 
adverse reactions are reported by law in the insert of the 
medication package (Poluzzi et al., 2012), also known as 
prescribing information or summary of product character-
istics. However, as the drug is used outside of clinical tri-
als (post-marketing phase), unexpected adverse drug reac-
tions are often detected. For example, an adverse drug 
reaction could arise in populations not investigated in clin-
ical trials (e.g., older or younger cohorts, pregnant 
women, patients with additional comorbidities). In addi-
tion, multiple drugs are often administered together (poly-
therapy), and an adverse drug reaction could arise from 
their interaction. Such suspected adverse reactions to 
drugs can be spontaneously reported to the regulatory 
agencies by physicians, marketing authorization holders, 
and the general public. Disproportionality analyses are 
statistical techniques developed to detect patterns within 
spontaneous reporting systems’ databases in an attempt to 
provide a more comprehensive safety profile of medica-
tions (Alves et al., 2013). 

Clinical trials and disproportionality analyses have 
complementary strengths. Clinical trials have obvious 
advantages, primarily that, by carefully selecting homoge-
neous samples and randomly distributing them across inter-
ventions, they remove many possible confounders and pro-
vide a strong causal assessment. Conversely, spontaneous 
reports can cover a much broader variety of patients and 
drug uses, including adverse reactions that are commonly 
underreported during clinical trials, although certain causal-
ity cannot be inferred due to confounders and lack of ran-
domization. For instance, rashes are easy to observe, and 
arrhythmias could be fatal. Therefore, both are relatively 
prominent in clinical trial reports (Loke & Derry, 2001; 
Seruga et al., 2016) as compared with symptoms such as 
raspy vocal quality or mispronunciations of speech sounds. 
However, communication impairments can be disabling 
from the patient’s point of view and, therefore, more likely 
to be spontaneously reported, as has been shown for stut-
tering (Ekhart et al., 2021; Inácio et al., 2017; Toki & Ono, 
2018; Trenque et al., 2021). 

Pharmacovigilance has long acknowledged that 
spontaneous reports provide very noisy information riddled
Fusaroli et al.: Drug-Induced Communication Atypicalities 3243
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Figure 1. Common causal mechanisms underlying drug–adverse event associations. The four diagrams (A–D) represent four possible mech-
anisms that can all give rise to the observed association (in the center). The diagrams are direct acyclic graphs (DAGs), that is, graphs in 
which the nodes (ellipses) are the observable phenomena, and the arrows are the causal connections (which can only be acyclical, i.e., go 
one direction and not form loops). DAG A represents the case in which the event is an actual adverse reaction caused by the administration 
of the drug of interest. DAG B represents a case of reverse causality, in which the drug is administered to treat the adverse event but is 
incorrectly reported. DAG C represents a case of confounding by indication, in which the underlying condition that justifies the use of the 
drug also more frequently induces the adverse event. DAG D represents a case of confounding by concomitant, in which the adverse event 
is a reaction to a co-administered drug (administered for the same condition or a related comorbidity). 

1 While the adverse event is causing the prescription of the drug, the 
drug itself could be affecting the symptom (e.g., diminishing it), and 
therefore, a more nuanced causal model than this simplified DAG 
would have to include bidirectional causal arrows or a temporal 
dimension to causation.
with well-known biases. For example, reports may be 
incomplete or duplicated, lack quality control of the infor-
mation provided (e.g., patients do not have the right lan-
guage and knowledge to accurately describe their symp-
toms), contain potential biases, and ignore external factors 
such as the novelty of a drug and how media coverage of 
adverse reactions affects the number of reports (Poluzzi 
et al., 2012; Raschi et al., 2018; Wisniewski et al., 2016). 
In other words, causal connections between drugs and 
adverse reactions should not be established based solely 
on spontaneous reports. Nevertheless, by taking these 
biases into account, disproportionality analyses can gener-
ate hypotheses for further investigation in analytical stud-
ies (cohort and case–control studies). Finally, with large-
enough sample sizes, there are methods for approximately 
estimating the causal effect of drugs in observational stud-
ies by adjusting for these newly considered confounders 
through confounding adjustment methods (Hernán, 2018). 
It should be noted that package inserts and spontaneous 
reports do not exhaust the possible sources of information 
on adverse drug reactions, which would include, for 
instance, the scientific literature, health records, and clini-
cal expertise in general. 

Causal Models Underlying Drug–Adverse 
Event Associations 

Disproportionality analyses identify adverse events 
that are more frequently present in reports about a given 
• •3244 Journal of Speech, Language, and Hearing Research Vol. 66
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drug than in reports not containing that drug. However, 
the observed association could be generated through dif-
ferent causal mechanisms, with four common ones repre-
sented in Figure 1. 

The first possible causal model is simply that the 
adverse event is indeed caused by the drug (i.e., adverse drug 
reaction; see Figure 1, Direct Acyclic Graph [DAG] A). For 
example, administering anticholinergic drugs often results 
in reduced salivation flow (xerostomia) and sedation of 
the mouth, which can cause speech impairment (Haft 
et al., 2015). 

However, the association might also result from 
reverse causality (see Figure 1, DAG B): The drug is taken 
because of the event (e.g., to treat it).1 For example, botu-
linum toxin is approved to treat spasmodic dysphonia, 
and antipsychotics are administered off-label to reduce 
stuttering (Maguire et al., 2020). These drugs can be 
reported as associated with a speech impairment because, 
for example, the lack of specific fields for symptoms of 
the underlying condition or for comorbidities often gener-
ates ambiguity in the reported information. Furthermore,
•3242–3259 September 2023

 Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



 

when therapy does not reduce symptoms, reports might 
incorrectly record the indication for use (preexisting stut-
tering) as an adverse reaction (after drug administration, 
stuttering is still there).

A third common possibility is the so-called “com-
mon cause” or fork (Pearl, 2009). Here, the underlying 
condition is causing both the prescription of the drug 
and the adverse event, without there being any direct 
causation between the latter two (i.e., confounding by 
indication; see Figure 1, DAG C). For example, psy-
chotic disorders can involve some degree of communica-
tion impairment (e.g., alogia—reduced and vague speech 
or disorganized speech), as well as the administration of 
antipsychotics. Therefore, when assessing all reports on 
the FAERS, one might find an association between com-
munication impairments and antipsychotics simply due 
to their co-presence, even if there was no direct causal 
association. Another example of the “common cause” 
problem is seen with gastroesophageal reflux, for which 
proton pump inhibitors (PPIs) are administered. Acid 
reflux can also affect the larynx and vocal cords, result-
ing in dysphonia (Lechien et al., 2017), which would then 
appear to be associated with PPIs even in the absence of 
a direct causal link. 

A fourth common possibility is that the adverse 
event is indeed an adverse reaction, but to a different con-
comitant drug also prescribed due to the underlying condi-
tion (i.e., confounding by concomitant; see Figure 1, DAG 
D). For example, diuretics are usually administered in 
conjunction with angiotensin-converting enzyme inhibitors 
(ACEIs), which are known to cause bradykinin-related 
cough and laryngeal irritation. Therefore, diuretics might 
appear to be associated with dysphonia, even if the latter 
was exclusively due to ACEIs. 

Finally, the relationship between a drug and an event 
may also not be reducible to one DAG only. Botulinum 
toxin may indeed be used to treat spasmodic dysphonia (see 
Figure 1, DAG B), but it was also subject to a warning by 
the FDA because the systemic spread of the toxin can lead 
to temporary flaccid paralysis and related dysphonia (see 
Figure 1, DAG A; Kuehn, 2009). 
From Causal Models to Statistical Analyses 

When disproportionality analyses identify an asso-
ciation between a drug and an adverse event, how can 
one discriminate between the possible causal mecha-
nisms? It turns out that there is no replacement for clini-
cal and scientific knowledge, including evidence from 
previous studies, clinical expertise, and informed mecha-
nistic hypotheses. This knowledge must play a meta-
statistical role in guiding the construction of statistical 
Downloaded from: https://pubs.asha.org Stephanie Borrie on 09/13/2023,
analyses. In other words, it is up to clinically and scien-
tifically informed disproportionality analyses, not statis-
tics alone, to identify plausible directions of causality 
and the necessary follow-up studies. 

Specifically, reverse causality (see Figure 1, DAG B) 
could be anticipated by carefully considering which drugs 
are used to treat the condition investigated. For instance, 
one could run analyses only on reports that do not include 
drugs used to treat communication disorders. Similarly, 
clinical expertise can identify whether underlying condi-
tions are also likely to cause the adverse events of interest 
(confounding by indication; see Figure 1, DAG C). This 
is the case of psychotic and affective disorders being asso-
ciated with communicative impairments (e.g., flat prosody 
for both types of disorders and semantic incoherence for 
psychotic disorders). A solution to this bias is to explicitly 
include the common cause in the model (“blocking the 
backdoor path” [Pearl, 2009]), for instance, by analyzing 
the populations separately: In our case, this implies sepa-
rately analyzing individuals with affective disorders, indi-
viduals with psychotic disorders, and individuals without 
any neurologic medication in order to test whether 
patients with, for example, affective disorders on versus 
off a specific drug display higher rates of the adverse event 
of interest. By looking at reports for individuals not tak-
ing any neurologic medication, it is possible to exclude 
(and therefore correct for) psychiatric patients and other 
communication-impairing conditions such as anxiety, 
Parkinson’s disease, and dementia. This analysis is, of 
course, a first approximation: Affective and psychotic 
disorders are complex conditions with very heterogeneous 
clinical profiles, comorbidities, and therapies. To move 
one step further, one could identify other underlying 
comorbid conditions likely to  cause  communicative
impairments and produce a control analysis where all 
these conditions are excluded. Similarly, in the confound-
ing by concomitant case (see Figure 1, DAG D), one 
could identify drugs known to produce communicative 
impairments and exclude reports containing these drugs 
from the analysis. This also deals with what is known as 
“competition bias” (Raschi et al., 2018): Known adverse 
drug reactions are easier to detect and, therefore, reported 
more frequently. Thus, established adverse drug reactions 
result in stronger associations, which mask the less reported 
unexpected ones. When known signals are removed, new 
associations may become visible. 

Although these techniques provide information about 
potential mechanisms, they do not guarantee accurate 
causal inference. Nevertheless, they contribute to the col-
lective construction of more accurate knowledge on the 
relationship between drugs and communicative impair-
ments by providing hypotheses to be explored and 
assessed in future investigations.
Fusaroli et al.: Drug-Induced Communication Atypicalities 3245
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Method 

Overview of the Analyses 

The general pipeline of the analysis is represented in 
Figure 2, the details of which are explained in the follow-
ing paragraphs. 

Definition of Search Terms 

We relied on two information sources: the SIDER 
for clinical trial reports of adverse drug reactions and the 
FAERS for spontaneous post-marketing reports. Both 
sources employ a standardized hierarchical lexicon to 
code for adverse events—the Medical Dictionary for 
Regulatory Activities or MedDRA (an international 
medical terminology developed under the auspices of the 
International Council for Harmonisation of Technical 
Requirements for Pharmaceuticals for Human Use). In 
MedDRA, the highest organization level is the System 
Organ Class (e.g., nervous system vs. vascular disorders), 
followed by the High-Level Group Terms (HLGTs; 
e.g., neuromuscular vs. neurological disorders), High-
Level Terms (e.g., muscle tone abnormal vs. motor neuron 
disease), and Preferred Terms (PTs; e.g., hypertonia vs. 
hypotonia). Both the SIDER and the FAERS code their 
adverse events as PTs. 
• •

Figure 2. Analysis pipeline. Each step of the analysis is represented as 
other. Descriptions of each step are provided in text. FAERS = FDA A
DAG = direct acyclic graph. 

3246 Journal of Speech, Language, and Hearing Research Vol. 66
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The MedDRA lexicon has some limitations that are 
important to acknowledge. First, the MedDRA does not 
always include the most adequate terms to report a given 
adverse event; therefore, some events are less likely to be 
reported or are reported relying on only partially relevant 
terms. Second, the same event may be reported using dif-
ferent MedDRA terms, often coded in different branches 
of the MedDRA dictionary. For instance, speech sound 
disorder is coded as a psychiatric event among “communi-
cation disorders and disturbances,” whereas dysphonia is 
coded as a respiratory event among “respiratory, thoracic 
and mediastinal disorders.” A third and even more con-
cerning limitation is that ensuing from the inconsistency 
between the MedDRA and different relevant conceptual 
frameworks to understand communicative impairments. 
This study must rely on the MedDRA lexicon, since both 
its information sources—SIDER and FAERS—code their 
adverse events as MedDRA PTs. However, caution is 
needed in interpreting MedDRA terms in this study. The 
MedDRA has been developed to facilitate the identification 
of signs and symptoms—emerging as drug-related adverse 
reactions—by a broad range of users with a diverse set of 
expertise, that is, from clinical practitioners to patients and 
caregivers. Therefore, its terms do not easily map onto 
other very relevant frameworks, such as the categories of 
communication impairments as investigated within psy-
chotic and affective disorders, and the nosological entities
•

a block, and arrows indicate the flow of data from one step to the 
dverse Event Reporting System; SIDER = Side Effect Resource; 
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of the speech and language pathology community, built to 
systematize knowledge on commonly co-occurring signs 
and symptoms and their underlying mechanisms. For 
instance, although impairments in prosody are commonly 
considered a speech motor control issue in the domain of 
speech and language pathology, in the study of affective 
and psychotic disorders, they are associated with flat and 
blunted affect, that is, with emotional aspects of the condi-
tions. This implies differences in how prosody-related 
impairments would be categorized. 

In order to partially overcome these limitations and 
to tailor the categories to the question at hand, good phar-
macovigilance practices rely on the so-called Standardised 
MedDRA Queries (SMQs), which are expert-validated 
search queries that aggregate many partially overlapping 
PTs across the MedDRA to identify and retrieve cases of 
interest. In the absence of SMQs for communicative impair-
ments, six clinical and domain experts (pharmacovigilance 
experts, speech-language pathologists, psychologists, and 
experts on voice markers of affective and psychotic disor-
ders; see the list of coauthors) independently clustered the 
communicative PTs based on semantic overlapping, and dis-
agreements were discussed among the team until resolved. 
The multidisciplinary team developed the clusters consider-
ing that diverse and not necessarily expert reporters may 
use multiple terms to identify the same communicative 
impairment. Additionally, we excluded from disproportion-
ality analysis generic PTs (e.g., speech disorder), which often 
imply low specificity in the report and could, in principle, 
indicate any communicative impairment. 

The FAERS 

The FAERS collects worldwide spontaneous reports 
of suspected adverse drug reactions and offers the highest 
accessibility to the public for customized analyses. Specifi-
cally, its raw quarterly data include demographic, therapeu-
tic, and outcome details for each individual report. The 
reaction (adverse event) and indication (why the drug was 
administered) fields are standardized using MedDRA PTs. 

The entire FAERS quarterly data (from January 
2004 to June 2021; FDA, 2022) were downloaded and pre-
processed to remove duplicate reports and standardize PTs 
and drug names. For the standardization of PTs, we used 
MedDRA Version 24.0. For the standardization of drug 
names, we used the WHO Drug Dictionary accessed in 
March 2020 and iteratively integrated to include newly 
marketed active ingredients. Furthermore, drug names were 
linked to their specific code from the Anatomical Thera-
peutic Chemical (ATC) hierarchical classification (2022 
version) to allow group visualization of similar drugs. 
Because individual substances can have multiple codes 
related to distinct indications of use or administration 
Downloaded from: https://pubs.asha.org Stephanie Borrie on 09/13/2023,
routes, we selected only one code for each active ingredi-
ent using a semiautomatic prioritizing algorithm (Gaimari 
et al., 2022). 
Exposure of Interest 

In order to identify medications associated with 
communicative impairments and deal with possible “com-
mon cause” biases (see Figure 1, DAG C), we separately 
investigated three clinical populations: patients with (a) 
affective and (b) psychotic conditions and (c) without any 
neurologic medications (i.e., likely without any neuropsy-
chiatric conditions, hereafter termed non-neuropsychiatric 
reports). To identify patients with psychotic and affective 
conditions, we selected all reports that recorded, as a rea-
son for using drugs, any PT (e.g., “schizophrenia”) 
belonging to the HLGTs for psychotic disorders (“schizo-
phrenia and other psychotic disorders”) and affective dis-
orders (“manic and bipolar mood disorders and distur-
bances” and “depressed mood disorders and distur-
bances”). To identify patients without neuropsychiatric 
conditions, we selected all reports that did not include any 
neurologic drug (according to the ATC classification) or 
any psychotic or affective PT. The results of the selection 
procedure are displayed in Supplemental Material S1, Sec-
tion C, Figure S1. 

Descriptive analyses were performed to characterize 
cases (displaying communicative impairments) versus non-
cases separately in the three populations of interest, with 
particular focus on demographics, concomitants, co-
reported events, and comorbidities (see Supplemental 
Material S1, Section C). Differences between cases and 
non-cases may point to susceptibilities and potential biases 
not a priori acknowledged. For example, if we find that 
older people are more represented in cases than in non-
cases, this may point to a potential bias related to a higher 
frequency of speech disorders in the elderly population. 

Disproportionality Analyses for Drug–Event 
Association Detection 

Disproportionality analysis (the analysis of a reliably 
more frequent reporting of an adverse event in the presence 
of a drug than in the presence of any other drug; see Figure 
2, Step 1) was performed following good signal detection 
guidelines (Wisniewski et al., 2016). Using a 2 × 2 contin-
gency table, we calculated the reporting odds ratio (ROR) 
whenever at least 10 cases of the event investigated co-
occurred with the drug investigated. In fact, when few cases 
have been collected, the probability of detecting spurious 
associations is high. Considering a threshold of 10 cases 
allowed us to reduce this risk at the cost of missing some 
true associations for which not enough cases had yet been
Fusaroli et al.: Drug-Induced Communication Atypicalities 3247
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collected (e.g., for particularly novel drugs) and can be seen 
as an alternative to other conservative methods, such as the 
information component (Norén et al., 2013). The ROR 
was deemed significant when the lower limit of its 95% 
confidence interval (CI) was greater than 1. In other words, 
we report a potential association when the adverse event is 
more likely to be reported together with the drug of interest 
than with any other drug but the one analyzed. 

We performed a disproportionality analysis evaluat-
ing associations between drugs (from the ATC 2022 classi-
fication, excluding mineral supplements and drugs 
included in the “Various” class) and communication-
related adverse events (subclusters of overlapping terms as 
identified in Table 1). The analyses were run on all reports 
involving (a) affective and (b) psychotic disorders as well 
as (c) non-neuropsychiatric reports. To filter out likely 
spurious associations, results were subjected to Bonferroni 
correction. 

The SIDER 

The SIDER is a public database that grants free 
access to the information contained in the package inserts, 
that is, the official information on a drug and its uses, 
• •

Table 1. MedDRA (Medical Dictionary for Regulatory Activities) Query for 

Cluster

Cluster 1 (dysphonia related) Dysphonia 
Dysphonia psychogenic 
Muscle tension dysphonia 

Cluster 2 (speech motor control related) Dysarthria 
Dyslalia 

Cluster 3 (prosody related) Aprosody 
Dysprosody 

Cluster 4 (aphasia related) Aphasia 
Primary progressive aphasia 

Cluster 5 (tachyphrenia related) Logorrhea 
Pressure of speech 

Cluster 6 (bradyphrenia related) Poverty of speech 
Bradyphrenia 

Cluster 7 (abnormal reasoning related) Ideas of reference 
Illogical thinking 

Cluster 8 (stereotypy related) Coprolalia 
Echolalia 

Cluster 9 (incoherence related) Disorganized speech 
Incoherent 
Clang associations 

Other terms excluded from clusters Pedantic speech 
Intellectualization 
Morbid thoughts 
Pathological doubt 
Intrusive thoughts 
Circumstantiality 

Note. We identified multiple subqueries including semantically overlapp
basis of semantic overlapping and, therefore, on the possibility that the re
with a reference to existing speech and language pathologies. 
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particularly its side effects, compiled and distributed by 
the drug manufacturers. Package inserts are text-mined, 
and the information retrieved is coded using the ATC 
classification for medications and the MedDRA classifica-
tion for adverse events. 

For each subquery of potential adverse reactions, we 
searched the specific PTs. We considered the identified 
medications as expected associations (see Figure 2, Step 2), 
which did not require further discussion of potential biases 
and causal mechanisms. The associations found in the 
FAERS but not present in the SIDER were considered 
unexpected and further assessed for potential causal con-
founding (see Figure 2, Step 3). 

Robustness Analyses 

Drugs unexpectedly associated with the subqueries 
investigated were stratified according to expected biases 
(see Figure 2, Step 4) through clinical reasoning and 
according to the causal inference framework discussed in 
the introduction. We accordingly separated the associations 
into uncontroversial ones (plausible adverse reactions for 
which no specific confounder was expected; see Figure 1, 
DAG A), potential reverse causality (see Figure 1, DAG
•

the retrieval of communicative atypicalities reports. 

MedDRA Preferred Terms 

Spasmodic dysphonia 
Aphonia 
Aphonia psychogenic 

Phonastenia 
Stridor 

Dysphemia 

Flight of ideas 
Tachyphrenia 

Lack of spontaneous speech 
Poverty of thought content 

Taciturnity 
Thought blocking 

Impaired reasoning 
Magical thinking 

Paralogism 

Perseveration 
Repetitive speech 

Verbigeration 

Derailment 
Loose associations 
Tangentiality 

Thinking abnormal 

Speech disorder developmental 
Mutism 
Speech disorder 
Cognitive linguistic disorder 

Social communication disorder 
Language disorder 
Speech sound disorder 
Slow speech 
Confabulation 

ing MedDRA Preferred Terms. The clusters were obtained on the 
porters may have used interchangeably different terms, rather than 
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B), and potential confounding by indication (see Figure 1, 
DAG C) and by concomitant (see Figure 1, DAG D). 
Robustness analyses adjusted the estimates for possible con-
founders (see Figure 2, Step 5): excluding reports with the 
communicative impairment among indications or restricting 
the investigation to a specific indication, to account for 
reverse causality bias (DAG B; Robustness Analysis 1); 
excluding reports with pathologies that may be responsible 
for indication bias (DAG C; Robustness Analysis 2), at 
least for drugs that are approved for multiple indications; 
and excluding reports with the drug responsible for the 
ambiguity, to account for concomitant bias (DAG D; 
Robustness Analysis 3). The procedure applied is docu-
mented in Supplemental Material S1, Section D. 

Aggregating Results 

The expected adverse drug reactions from the SIDER 
and robust unexpected associations from the FAERS were 
aggregated in a list per each main cluster of overlapping 
PTs (see Figure 2, Step 6). To provide a detailed overview 
of the results, we visualized each list as a table showing 
expected and previously unexpected adverse reactions orga-
nized according to the ATC hierarchical classification (see 
Supplemental Material S1, Section D). To provide a more 
general overview of the drug classes that should be consid-
ered for the analysis of communication-related markers, we 
built a heatmap showing the associations at the third level 
of the ATC classification (e.g., antipsychotics, antihista-
mines, and antidepressants; see the public repository [M. 
Fusaroli & Fusaroli, 2022] for a collated heatmap at the 
level of single active ingredients). 
Results 

MedDRA Query for Case Retrieval 

We defined nine clusters of overlapping MedDRA 
PTs referring to communicative impairments. For sim-
plicity, we named the clusters with reference to the 
semantic overlap and specific concerns (communicative 
impairments in affective and psychotic disorders) that 
guided the aggregation, that is, related to dysphonia 
(Cluster 1), speech motor control disorders (Cluster 2), 
prosody (Cluster 3), aphasia (Cluster 4), tachyphrenia 
(Cluster 5), bradyphrenia (Cluster 6), abnormal reasoning 
(Cluster 7), stereotypy (Cluster 8), and incoherence (Clus-
ter 9; see Table 1). Sixteen of the communicative PTs 
were excluded from clustering and the subsequent analy-
ses. It is important to note that the clusters might not be 
entirely coherent with current uses of the terms in the 
speech and language pathology community, but they 
were the result of an interdisciplinary consensus, and 
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they will be discussed and clarified where they could gen-
erate misunderstandings. 

Populations of Interest 

We selected three populations of interest: 302,000 
reports involving affective disorders; 11,631 reports involv-
ing psychotic disorders; and 7,703,183 reports involving 
non-neuropsychiatric disorders. A detailed presentation of 
the number of cases (reports with communication-related 
adverse events) and non-cases is presented in Supplemental 
Material S1, Section C, Figures S1–S5 and Table S2. 

Expected and Unexpected Solid Associations 

Disproportionality results and effect size for each 
cluster and each population are reported in Supplemental 
Material S2. We detected both expected—according to the 
SIDER—and unexpected drug associations and performed 
robustness analyses on the latter ones. The result was a 
list of 291 expected and 91 unexpected potential con-
founding medications. Emerging results are shown in Sup-
plemental Material S1, Section C, Figure S6 and Tables 
S3–S9. No association was found for the prosody and 
abnormal reasoning clusters. 

We detected 72 drug classes (ATC third level) asso-
ciated with a disproportional reporting of the dysphonia 
cluster: 53 were already expected based on the SIDER, 10 
classes included both drugs already reported in the SIDER 
and unexpected drugs (integrated classes), and nine were 
entirely unexpected. Restricting to strong signals (i.e., dis-
proportions significant after the Bonferroni correction) in 
the non-neuropsychiatric population, the highest number 
of cases involved inhalants, namely, fluticasone (4,669 
cases, ROR = 10.48, 95% CI [10.14, 10.81]), salmeterol 
(3,099 cases, ROR = 12.16, 95% CI [11.71, 12.63]), and 
salbutamol (2,434 cases, ROR = 5.52, 95% CI [5.29, 
5.76]), whereas the highest lower limits of the 95% CI of 
the ROR concerned two vascular endothelial growth fac-
tor receptor (VEGFR) inhibitors, namely, regorafenib 
(530 cases, ROR = 22.25, 95% CI [20.29, 24.35]) and axi-
tinib (437 cases, ROR = 14.27, 95% CI [12.92, 15.37]) and 
salmeterol. The many anticholinergic drugs already pres-
ent in the SIDER were integrated with unexpected signals 
for umeclidinium (inhaled bronchodilators), rupatadine, 
and fexofenadine (antihistamines). Among the robustness 
analyses implemented, we accounted for reverse causality 
(DAG B: botulinum toxin excluding its use for spasmodic 
dysphonia [Faham et al., 2021]), confounding by indica-
tion (DAG C: antihistamines restricted to urticaria, to 
exclude the confound due to asthma), and confounding by 
concomitant (DAG D: cardiovascular agents excluding 
ACEIs, beta-agonists excluding inhalants).
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We detected 37 drug classes associated with a dis-
proportional reporting of the speech motor control cluster 
(17 expected, 10 integrated, and 10 unexpected). The most 
numerous cases concerned immunomodulators used in 
multiple sclerosis, namely, natalizumab (770 cases, ROR = 
4.48, 95% CI [4.16, 4.82]) and interferon beta-1a (674 cases, 
ROR = 3.62, 95% CI [3.34, 3.91]), and a selective calcium 
channel blocker, namely, amlodipine (376 cases, ROR = 
2.05, 95% CI [1.84, 2.27]). Drugs with the highest lower 
limit were anti-infectives: vidarabine (20 cases, ROR = 
71.42, 95% CI [42.66, 113.63]), valaciclovir (334 cases, 
ROR = 12.14, 95% CI [10.84, 13.55]), and metronidazole 
(309 cases, ROR = 9.48, 95% CI [8.44, 10.63]). 

A total of 51 drug classes were associated with the 
aphasia cluster  (19 expected, 10 integrated,  and  22 unex-
pected), with the most numerous being natalizumab (872 
cases, ROR = 5.54, 95% CI [5.16, 5.94]), interferon beta-1a 
(643 cases, ROR = 3.71, 95% CI [3.42, 4.02]), and levothy-
roxine (327 cases, ROR = 1.57, 95% CI [1.4, 1.75] and the 
highest disproportionalities being with antineoplastic agents 
such as CAR-T (chimeric antigen receptor T cells: T lym-
phocites retrieved from the patient and genetically engi-
neered to target hematologic neoplasia), namely, axicabta-
gene ciloleucel (114 cases, ROR = 43.68, 95% CI [35.78, 
52.8]) and tisagenlecleucel-t (58 cases, ROR = 24.5, 95% 
CI [18.52, 31.84]), and avapritinib (20 cases, ROR = 18, 
95% CI [10.33, 26.44]). 

Concerning the stereotypy cluster, we did not find 
any unexpected signal and only four expected drug classes: 
antineoplastic (ifosfamide), antiepileptic (topiramate), anti-
epileptic (phenelzine and bupropion), and contrast (iopa-
midol) agents. The only strong signal was with interferon 
beta-1a in non-neuropsychiatric patients (20 cases, ROR = 
6.12, 95% CI [3.65, 9.73]). 

A total of 12 drug classes were associated with the 
tachyphrenia cluster (four unexpected, two integrated, and 
six expected). We observed associations based on only few 
cases, the greatest being clarithromycin (49 cases, ROR = 
22.38, 95% CI [16.43, 29.8]), levothyroxine (47 cases, 
ROR = 2.29, 95% CI [1.67, 3.07]), and ivermectin (40 
cases, ROR = 99.9, 95% CI [70.83, 137.18]), with the 
highest disproportionalities for ivermectin, clarithromycin, 
and niraparib (11 cases, ROR = 10.54, 95% CI [5.24, 
18.94]). A total of 10 drug classes were associated with the 
bradyphrenia cluster (two unexpected, two integrated, and 
six expected), the most common drugs being natalizumab 
(105 cases, ROR = 4.65, 95% CI [3.77, 5.67]), levothyrox-
ine (85 cases, ROR = 2.97, 95% CI [2.36, 3.7]), and inter-
feron beta-1a (65 cases, ROR = 2.6, 95% CI [2, 3.34]) and 
the strongest signals being with lorcaserin (17 cases, 
ROR = 40.85, 95% CI [23.67, 65.71]), finasteride (33 cases, 
ROR = 11.9, 95% CI [8.16, 16.79]), and natalizumab. 
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Finally, 44 drug classes were associated with the incoher-
ence cluster (34 expected, four integrated, and six unex-
pected), the more numerous substances being levothyroxine 
(237 cases, ROR = 1.9, 95% CI [1.67, 2.17]), interferon 
beta-1a (213 cases, ROR = 1.98, 95% CI [1.72, 2.27]), and 
montelukast (200 cases, ROR = 5.58, 95% CI [4.82, 6.43]) 
and the highest disproportionalities being those with anti-
infectives, namely, mefloquine (33 cases, ROR = 36.26, 
95% CI [24.8, 51.28]), zanamivir (14 cases, ROR = 11.95, 
95% CI [6.51, 20.13]), and oseltamivir (62 cases, ROR = 
6.47, 95% CI [4.95–8.31]). 
Discussion 

Overview 

Given the increased focus on communication-related 
markers of affective and psychotic disorders, there is an 
increased need for a careful overview of how medications 
could act as confounders. This study rigorously combined 
evidence from drug package inserts with post-marketing 
disproportionality analyses and relied on causal inference 
techniques to account for potential biases, in order to pro-
vide a first attempt at such an overview. In the following 
subsections, we discuss how to interpret and use these 
findings and methods in the broader context of digital 
phenotyping trying to identify markers of neuropsychiatric 
conditions: discussing expected and unexpected potential 
adverse reactions as they relate to the specific context of 
communication-related markers of psychotic and affective 
disorders, presenting the limitations and possibilities of 
our approach, and discussing possible realistic uses of the 
list in future research. 

Known and Unexpected Adverse Reactions 

The final list of potential confounding drugs for 
communication-related markers encompasses both expected 
(i.e., described in the package insert) and unexpected associ-
ations. Some of the expected associations are already dis-
cussed in the literature on communication-related markers. 
For example, the effects of antipsychotics and antidepres-
sants have been directly investigated when evaluating 
communication-related markers (Cohen et al., 2017; 
Cummins et al., 2015; de Boer et al., 2020; Püschel et al., 
1998; Sinha et al., 2015). However, even these expected 
associations are not routinely considered in the actual 
analysis of communication-related markers of psychotic 
disorders (Parola et al., 2020), and when they are, the 
results are inconclusive (Parola et al., 2022, 2023). 

In other cases, we found unexpected associations with 
drugs from already known classes (integrated findings,
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i.e., drugs from the same class were already known to asso-
ciate with the adverse reaction), for instance, clonazepam 
(an antiepileptic, also used to treat anxiety) being associ-
ated with the aphasia cluster and antineoplastic agents 
(mainly VEGFR inhibitors) being associated with the dys-
phonia cluster. Some drugs’ package inserts, in fact, did 
not list all the possible PTs that could be used to describe 
their side effects. This led to the classification of certain 
expected drug reactions as unexpected (e.g., the package 
inserts for haloperidol only mentioned motor control disor-
ders, but not speech motor control disorders), even if the 
scientific literature or clinical practitioners may already be 
aware of them. 

Other associations are more unexpected. Medica-
tions used to treat cancer, such as plant alkaloids, cyto-
toxic antibiotics, protein kinase inhibitors, and monoclo-
nal antibodies, emerge as potential causes of aphasia, 
which are not reported in the SIDER database. Crucially, 
since there is at least some evidence of increased cancer 
risk in schizophrenia (Nordentoft et al., 2021), we could 
expect a more common use of these drugs in patients with 
schizophrenia than in controls. Therefore, the adverse 
reaction could influence how well a predictive model 
could detect psychotic disorders from speech or language 
patterns, at least in complex machine learning models. 
Nevertheless, these drugs have never been mentioned, to 
our knowledge, in previous studies of communication-
related markers as possible confounders. 

Drug-Induced Communicative 
Impairment Mechanisms 

We contextualized the drugs identified as possible 
confounders for communication-related markers according 
to their plausible mechanism of action (see Figure 3). 
Indeed, biological plausibility is one element of credibility 
for hypotheses emerging from disproportionality analyses. 
Furthermore, understanding the mechanism underlying 
drug-induced communication atypicalities may allow to 
identify other plausible involved drugs not detected in our 
study (e.g., because of unaccounted for biases or because 
still not on the market). Finally, knowledge of exactly 
how communication-related markers are affected by each 
drug may be included in machine learning algorithms to 
provide more reliable predictions. 

The role of drugs in inducing phonatory impair-
ment, often reported as hoarseness, is already consolidated 
for multiple drugs (see Supplemental Material S1, Table 
S3). The primary one responsible, in terms of numbers, is 
plausibly anticholinergic toxicity because of xerostomia 
and larynx desiccation (antimuscarinic inhaled bronchodi-
lators, spasmolytics, drugs for overactive bladder, muscle 
relaxants, antidepressants, antipsychotics, antihistamines; 
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Haft et al., 2015). Notably, we observed a signal for 
second- and third-generation antihistamines, which, tres-
passing less the blood–brain barrier, preserve from central 
anticholinergic toxicity (mainly sedation) but may none-
theless exert their peripheric effect on salivary glands. The 
drying effect of diuretics, secondary to hypovolemia, is 
controversial (Schwartz et al., 2009). Instead, drug-related 
laryngeal irritation is an established common condition, 
whether because of inhalant drugs (corticosteroids, espe-
cially dry powders [Galván & Guarderas, 2012]; beta-
agonists; and mast cell stabilizers), drugs inducing cough 
such as ACEIs (Bangalore et al., 2010), or improperly 
taken bisphosphonates (Hanna et al., 2012). In fact, for 
inhalants and other respiratory drugs (xanthines, leukotri-
ene receptor antagonists, respiratory monoclonal anti-
bodies), it is often difficult to differentiate between the 
role of the drug and the underlying disease. 

Drug-induced organic lesions of vocal cords may also 
be responsible for dysphonia, as in the case of hemor-
rhages induced by antithrombotics, anti-inflammatories, 
and phosphodiesterase type 5 (PDE-5) inhibitors (Stachler 
et al., 2018); reversible nodules due to excessive granula-
tion response induced by acitretin and isotretinoin (Busso 
& Serrano, 2005; Kim et al., 2006); or necrosis due to the 
antiangiogenic activity of VEGFR inhibitors (Kudo et al., 
2018; Melo et al., 2019; Motzer et al., 2013; Saavedra 
et al., 2014; Sulibhavi et al., 2023; Wen et al., 2018). Sex 
hormones may also be involved (Zamponi et al., 2021), as 
for androgens and antigonadotropins inducing vocal cords 
thickening and voice deepening through androgen recep-
tors on the larynx (Chadwick et al., 2021). Furthermore, 
antineoplastics and immunomodulating drugs are also 
known to be associated with dysphonia, plausibly due to 
both the cytotoxic (Berretta et al., 2004) and immunomod-
ulating (Benfaremo et al., 2018; Bruno et al., 2021) roles of 
the drug, the disease (Gavrila et al., 2015), and concomi-
tant radiotherapy (Villari & Courey, 2015). Finally, impair-
ment in phonation may be due to extrapyramidal dystonia 
(mainly antipsychotics, but also dopamine-antagonist anti-
emetics such as metoclopramide, which was subjected to an 
FDA black box warning for dyskinesia, with involuntary 
movements of the tongue) or to botulinum-related flaccid 
paralysis (a black box warning for systemic toxicity was 
added to the package insert in 2009). 

Other drug classes expected based on the SIDER 
are insulins, 5-HT3 antagonist antiemetics, antimycotics, 
antivirals, dopamine agonists, cholinergic drugs, cough 
preparations, antiepileptics, analgesics and anesthetics, 
anxiolytics and sedatives, and cardiovascular drugs. These 
drug are themselves not totally free of confounding, such as 
confounding by indication (DAG C: diabetes [Hamdan 
et al., 2013], cough, and vomit) and reverse causality (DAG 
B: PPIs, for dysphonia supposedly due to laryngoesophageal
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Figure 3. Summary of drug-related communicative atypicalities’ plausible mechanisms. Created with BioRender.com. ACEIs = angiotensin-
converting enzyme inhibitors; VEGFR = vascular endothelial growth factor receptor; NSAIDs = nonsteroidal anti-inflammatory drugs; PDE-5 = 
phosphodiesterase type 5. 
reflux [Lechien et al., 2017; Ruiz et al., 2014], and antibi-
otics, for dysphonia supposedly due to respiratory infec-
tions [Stachler et al., 2018]). 

The role of drugs in inducing speech motor control 
impairment is already consolidated for dopamine antagonist– 
related acute dystonia and tardive dyskinesia (antipsychotics), 
agents inducing sedation and reduced speech motor control 
(anxiolytics, antiepileptics, opioids, antidepressants, anticho-
linergic drugs, muscle relaxants), neurotoxic drugs (anti-
infective, antineoplastic, and immunomodulator agents), 
dopamine agonists (Craig-McQuaide et al., 2014), and drugs 
interacting with catecholaminergic and GABAergic path-
ways (Ekhart et al., 2021). We also observed an association 
with antineoplastics and immunomodulators—plausibly due 
to their neurotoxicity—and with cardiovascular agents and 
hormones. Interestingly, the signal for antithrombotic 
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medications persisted when excluding ischemic and unspeci-
fied stroke cases. Even if we cannot exclude reverse causal-
ity and indication bias, this signal may point to the possibil-
ity of drug-induced cerebral hemorrhages. 

Multiple cases of iatrogenic aphasia have been 
reported in the last decade (Rizwan et al., 2021), often 
concerning reversible conditions induced by immunomod-
ulators, chemotherapy, and fluoroquinolone-related neuro-
toxicity (Belin et al., 2020; Bennett et al., 2019; Carl 
et al., 2015; Higa et al., 1995; Patel et al., 2015). A similar 
toxicity may also manifest because of the increased perme-
ability of the blood–brain barrier due to contrast media, 
potentially allowing endogenous and exogenous neuro-
toxins to reach the central nervous system. Dopamine 
antagonism (Chien et al., 2017), shared by antipsychotics 
and the propulsive domperidone, may also be responsible
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for aphasia, as well as antithrombotic-related hemor-
rhages. Bradyphrenia and tachyphrenia may also be the 
manifestation of neurotoxicity and of sedation (e.g., anti-
epileptics, pramipexole, antipsychotics, lithium, benzodiaz-
epines, antidepressants, antihistamines, cannabinoids) and 
excitation (levothyroxine, psychostimulants), respectively. 

Limitations and Future Directions 

Formalized Query 
In the attempt to retrieve cases of interest in the 

FAERS, we found an often-ambiguous lexicon covering 
communicative impairments. This study explicitly formal-
ized a MedDRA Query to retrieve communicative impair-
ments relevant to affective and psychotic disorders more 
systematically. This formalized query is a necessary step 
to focus the attention and to create a common framework 
for disproportionality analyses on these impairments. 

The current query presents some limitations. First, 
one might more closely investigate how physicians describe 
and report these impairments. For example, common terms 
used by physicians to report dysphonia are acute laryngitis, 
nonspecific dysphonia, benign vocal fold lesions, and 
chronic laryngitis (Stachler et al., 2018), and for retrieving 
antipsychotic-related dysarthria cases, one may search also 
for extrapyramidal syndrome and laryngospasm. More 
work is needed to cover these labels and validate the results 
of searches that integrate them. Second, perhaps more cru-
cially, we observed a high proportion of communication-
related FAERS cases submitted by the general public. This 
suggests that communicative adverse events might be, at 
the same time, underplayed by medical practitioners and of 
crucial importance to patients, caregivers, and families. In 
fact, we observed that patients with communicative impair-
ments tend to specify the resulting disability more fre-
quently in their reports than patients with other adverse 
events but the same underlying condition. Third, during the 
definition of the query, we found several inconsistencies 
between the clusters of relevant MedDRA terms and termi-
nological practices in the speech and language pathology 
community, which could create unnecessary confusion. 

One could also question whether FAERS and 
SIDER information is sufficiently sensitive to the kind of 
properties analyzed in the search for communication-
related markers. For example, minor acoustic atypicalities 
such as increased jitter—low-level irregularities in voice 
pitch, a commonly used acoustic measure in predictive 
machine learning algorithms for affective and psychotic dis-
orders (Cummins et al., 2015; Parola et al., 2020) as well as 
for Parkinson’s disease (Tsanas & Arora, 2021)—might not 
be perceived, or at least not perceived as enough of an 
issue, by patients and clinicians to be reported and precisely 
labeled. This suggests that a closer collaboration of patients 
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and practitioners—crucially including speech and language 
pathology and communicative marker experts—in develop-
ing a common and easy-to-use terminology and clear defi-
nitions for communicative impairments would provide a 
substantial improvement for the MedDRA lexicon. Never-
theless, the construction of an initial query enables initial 
explorations of medication-based confounders and facili-
tates proposals, thus representing an important step in the 
development of useful SMQs. 
Causal Inference 
Although still uncommon in disproportionality anal-

yses, formalized causal inference and the use of DAGs in 
particular are a promising endeavor (Cunningham, 2021; 
Pearl, 2009). These tools provide a standardized frame-
work for the formalization, visualization, and communica-
tion of confounding. These tools also provide structured 
and more reproducible procedures to account for at least 
some of the biases when designing analyses (Pearl, 2009). 

We have built four relatively simple DAGs of the 
mechanisms underlying observed drug–event associations. 
Thus, we have tried to identify the most problematic biases 
for our questions and accordingly adjusted our analyses and 
interpretation. However, it is important to note that many 
biases could not be fixed and that the characteristics of the 
reporting (often incomplete and unverified) complicate 
attempts at causal inference. For example, PPIs are used to 
treat or prevent gastroesophageal reflux, a condition that 
may also affect the larynx and vocal cords and result in lar-
yngoesophageal reflux disease and dysphonia (Lechien 
et al., 2017). Therefore, the causal direction (PPI to dyspho-
nia or reflux to both PPI and dysphonia) cannot be easily 
identified. Furthermore, our broad focus did not permit us 
to delve into the richness of spontaneous reports (e.g., infor-
mation on concomitants, therapy regimen, co-occurring 
events) and to map more complex scenarios (e.g., variables 
affecting,  at  the same time,  the  use  of  the drug,  the inci-
dence of the adverse event, and the reporting of it). For 
example, botulinum toxin has been referred to as a potential 
cause and treatment for spasmodic dysphonia but may also 
temporarily cause dysphonia through muscle weakening. In 
addition, biases, such as notoriety bias, and masking bias, 
adjustment for the Weber effect (Raschi et al., 2018), are 
beyond the scope of this study but should be considered 
when investigating specific drugs more closely. Furthermore, 
because of the many biases of spontaneous reporting, the 
comparison of the safety profile of different drugs on the 
basis of disproportionality alone tends to be unreliable and 
is, in general, not recommended (Mouffak et al., 2021). 

Integrating Additional Sources 
The main objective of spontaneous reporting sys-

tems is to collect useful data to identify unexpected
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associations between a drug and an adverse event in a 
timely and cost-effective manner. This identification 
enables early intervention and, therefore, limits the costs 
of drug-related harm. To effectively target safety issues 
currently not known, it is extremely important to integrate 
already acquired knowledge, which may come from the 
literature or from regulatory sources—primarily package 
inserts (FDA) and summaries of product characteristics 
(European Medicines Agency). 

Databases that store this information in an easily 
accessible way are a promising tool for large-scale analyses 
because reading and coding each individual package insert 
would be extremely time consuming. The SIDER uses a 
natural language processing algorithm to extract the infor-
mation from regulatory sources and has not been updated 
since 2016 (Kuhn et al., 2016); therefore, it plausibly con-
tains errors and outdated information. Furthermore, it may 
contain terms linked but not coincident with the investi-
gated events (as in the case of haloperidol), and therefore, 
our automated process may lack some expected reactions. 

A worldwide database in which data for each mar-
keted drug are compiled and regularly updated by the 
marketing authorization holder and stored in an accessible 
way would enrich both regulatory activities and dispro-
portionality analyses. In the meantime, the use of the 
SIDER or similar databases may help in large-scale analy-
ses to reduce the risk of classifying already known reac-
tions as unexpected signals. 

We cannot be sure whether some of the unexpected 
associations have already appeared as notes in clinical tri-
als (but not reported in the package insert) or in subse-
quent scientific literature. Future work should attempt to 
integrate these additional sources of information. How-
ever, independent of the novelty, our list aggregates large 
amounts of otherwise dispersed information in an easier-
to-consult format. 

Future work could integrate additional sources of 
information, as related to both known associations (e.g., 
scientific literature) and additional clinical data (e.g., 
health records), to provide a more comprehensive over-
view. Furthermore, different sources could be weighted 
according to the degree of evidence available (e.g., via 
Bayesian analysis). 

Large-Scale Analyses 
Traditional disproportionality analyses focus on, at 

most, a handful of drugs and/or adverse events (Aiello 
et al., 2021; Raschi et al., 2021). Thus, they can provide a 
fine-grained analysis of potential confounders, including a 
nuanced analysis of how sociodemographic variables 
might affect drug prescription and adverse reactions 
(Hoekstra et al., 2021). 
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Large-scale analyses require a broader overview, 
which cannot match the same level of detail and discus-
sion. The strategies we implemented to simultaneously 
assess large sets of adverse events and drugs may help 
design future large-scale analyses. These strategies range 
from correction for multiple testing and automatic integra-
tion with regulatory databases to an attempt to formalize 
possible underlying causal mechanisms and the use of a 
priori expected biases to implement robustness analyses. 
Large-scale analyses, however, provide only an initial per-
spective and must be complemented with more detailed 
studies of specific associations and their confounds. 
How Should This List Be Used? 

We advocate for the list of drug confounders (see 
Figure 3 and Supplemental Material S1, Section D, 
Table S10)—whether as a cause of communicative atypi-
cality or as a proxy of an underlying susceptibility—to be 
used in future studies of communication-related behavioral 
markers by including the presence of a medication as a 
covariate, removing participants who take medication, or 
interpreting results and study limitations as a function of 
which medications were taken. As observed in multiple 
reviews, most studies of such markers involve small sample 
sizes (R. Fusaroli et al., 2017; Parola et al., 2020; Weed & 
Fusaroli, 2020). Such studies would be at a loss trying to 
adjust for such a large number of medications and would 
lack reliable evidence related to all but the most commonly 
used ones (Rocca & Yarkoni, 2021; Westfall & Yarkoni, 
2016). Although a single study may still check the list to 
identify likely cautions (e.g., much higher use of drug x in 
the target population than in the controls), the real poten-
tial lies in the cumulative aggregation of this information 
across studies. The key is to promote transparency of 
reporting and record medications used by participants in 
individual studies, which would allow future mega-analyses 
(R. Fusaroli et al., 2022; aggregating data sets across stud-
ies preserving individual-level data) to directly assess the 
impact of a large variety of relevant medications. 

Accounting for confounders is also important in 
machine learning studies. Current reviews and perspec-
tives on the study of communication-related behavioral 
markers advocate the collection of larger and more 
diverse samples and the use of state-of-the-art machine 
learning techniques, such as deep learning (Parola et al., 
2022, 2023; Rybner et al., 2022). In these contexts, the 
algorithms can detect even the presence of weak con-
founding if it improves prediction. In other words, many 
machine learning models are likely to recognize small dif-
ferences between groups they try to classify. If these dif-
ferences are due to higher levels of medication being used 
and not due to the target disorder, the models may not
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generalize well to other samples of the disorder where the 
medication use is different, which is common when 
changing countries and sociodemographic settings. Accord-
ingly, a deeper understanding of the confounders and mech-
anisms at work is a key component also for more data-
driven machine learning approaches, for instance, to guide 
bias assessment or even to identify more rigorous pipelines 
(e.g., presenting medication-balanced validation sets). 

Finally, this list may also help identify more general 
hypothesized mechanisms underlying adverse events beyond 
a specific drug. Pharmacosurveillance can thus act not 
only as a guide for precautionary regulatory action but 
also as a hypothesis-generation tool for scientific 
research, which could lead to follow-up studies involv-
ing, for example, electronic health records (to assess 
adverse events before and after drug administration), 
experimental setups, and clinical studies. For instance, a 
more thorough investigation of the association between 
domperidone and aphasia would be of particular inter-
est, given the biological plausibility (i.e., its activity as a 
dopamine antagonist) and the existence of conditions 
that increase the blood–brain barrier permeability. This 
might lead to more generalizable predictions regarding 
confounding drugs and increased understanding of the 
communicative features of the disorders over time. 

Applications of the Methods to Other 
Neuropsychiatric Conditions 

In  this  study, we have focused  on  affective and  psy-
chotic disorders since previous research explicitly called for 
better investigation of medication-related confounders in 
identifying communication markers for these populations 
(Cummins et al., 2015; Low et al., 2020; Parola et al., 2020). 
However, with proper consideration, the list could be easily 
extended when assessing communication-related behavioral 
markers for other conditions such as neurodevelopmental 
(e.g., autistic spectrum disorder) and neurological (e.g., 
Parkinson’s disease) disorders. In particular, for Parkinson’s 
disease, good practices to account for med-on and med-off 
levodopa states already exist (e.g., Im et al., 2019; Thies 
et al., 2021). 
Conclusions 

Motivated by the increasing interest in communication-
related behavioral markers of affective and psychotic dis-
orders, we set out to investigate the potential role of medi-
cations in affecting communication-related markers of 
these disorders. We extracted the drugs already expected to 
cause communicative impairments from the SIDER. This 
paved the way for a pharmacovigilance analysis of a larger 
Downloaded from: https://pubs.asha.org Stephanie Borrie on 09/13/2023,
set of communication-related adverse events and drugs, 
controlling for prominent biases. 

We identified a list of medications to be accounted 
for in future studies on communication and biobehavioral 
markers of affective and psychotic disorders. These studies 
should take into account drugs irritating vocal cords and 
the larynx (inhalants, bisphosphonates, ACEIs), drugs 
inducing laryngeal desiccation (anticholinergics, diuretics), 
drugs impairing speech motor control (anxiolytics, antiepi-
leptics, opioids, antidepressants, anticholinergics, myore-
laxants, antipsychotics, antiemetics) or temporarily para-
lyzing vocal cords (botulinum toxin), drugs inducing laryn-
geal hypertrophy (androgens, antigonadotropins) or the 
development of nodules on vocal cords (retinoids), drugs 
potentially inducing necrosis (VEGFR inhibitors) or hem-
orrhages in the vocal cords (antithrombotics, nonsteroidal 
anti-inflammatories, PDE-5 inhibitors), sedatives (anxiolyt-
ics, antiepileptics, antidepressants, hypnotics, antihista-
mines, cannabinoids), stimulants (psychostimulants, thyroid 
hormones, pramipexole), drugs interacting with catechol-
aminergic and GABAergic neurotransmitters, and neuro-
toxic drugs (anti-infectives, antineoplastics, immunomodula-
tors, contrast media, antithrombotics). 

The work showcases methodological innovations to 
facilitate large-scale disproportionality analyses and identifies 
current shortcomings, along with discussing potential causal 
and pathogenic mechanisms. In particular, the existing lexi-
con to identify communicative adverse events is ambiguous 
and not well defined, perhaps due to an underappreciation of 
the perspectives of patients and lack of integration of experts 
in speech and language pathology and in communicative 
impairments. We advocate for future work on this. 

Drugs that confound the effect between communication-
related behavioral markers and psychiatric disorders are 
abundant. There should be concern not only for confound-
ing drugs and comorbidities but also for nonmedical sub-
stances and habits (e.g., smoking, vocal use). Here, we pro-
vide a tool for learning about and potentially adjusting for 
the confounders to improve digital phenotyping research. 
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